sklearn学习笔记1
Image recognition with Support Vector Machines
#our dataset is provided within scikit-learn
#let's start by importing and printing its description
import sklearn as sk
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()
print(faces.DESCR)
Modified Olivetti faces dataset. The original database was available from (now defunct)
http://www.uk.research.att.com/facedatabase.html
The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis:
http://www.cs.nyu.edu/~roweis/
There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement). The original dataset consisted of 92 x 112, while the Roweis version consists of 64x64 images.
print(faces.keys())
print(faces.images.shape)
print(faces.data.shape)
print(faces.target.shape)
print(np.max(faces.data))
print(np.min(faces.data))
print(np.mean(faces.data))
Before learning, let’s plot some faces.
def print_faces(images, target, top_n):
#set up the figure size in inches
fig = plt.figure(figsize=(12, 12))
fig.subplots_adjust(left = 0, right = 1, bottom = 0, top = 1, hspace = 0.05,wspace = 0.05)
for i in range(top_n):
#plot the images in a matrix of 20x20
p = fig.add_subplot(20, 20, i + 1, xticks = [], yticks = [])
p.imshow(images[i], cmap = plt.cm.bone)
#label the image with target value
p.text(0, 14, str(target[i]))
p.text(0, 60, str(i))
If we print the first 20 images, we can see faces from two faces.(但是不知道为什么,打印不出图片)
print_faces(faces.images, faces.target, 20)
Training a Support Vector machine
Import the SVC class from the sklearn.svm module:
from sklearn.svm import SVC
To start, we will use the simplest kernel, the linear one
svc_1 = SVC(kernel = 'linear')
Before continuing, we will split our dataset into training and testing datasets.
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(faces.data,faces.target, test_size = 0.25, random_state = 0)
And we will define a function to evaluate K-fold cross-validation.
from sklearn.cross_validation import cross_val_score, KFold
from scipy.stats import sem
def evaluate_cross_validation(clf, X, y, K):
#create a k-fold cross validation iterator
cv = KFold(len(y), K, shuffle=True, random_state=0)
#by default the score used is the one return by score method of the estimator (accuracy)
scores = cross_val_score(clf, X, y, cv = cv)
print(scores)
print(("Mean score: {0: .3f} (+/-{1: .3f})").format(np.mean(scores), sem(scores)))
evaluate_cross_validation(svc_1, X_train, y_train, 5)
[ 0.93333333 0.86666667 0.91666667 0.93333333 0.91666667]
Mean score: 0.913 (+/- 0.012)
We will also define a function to perform training on the training set and evaluate the performance on the testing set.
from sklearn import metrics
def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
clf.fit(X_train, y_train)
print("Accuracy on training set:")
print(clf.score(X_train, y_train))
print("Accuracy on testing set:")
print(clf.score(X_test, y_test)) y_pred = clf.predict(X_test) print("Classification Report:")
print(metrics.classification_report(y_test, y_pred))
print("Confusion Matrix:")
print(metrics.confusion_matrix(y_test, y_pred))
train_and_evaluate(svc_1, X_train, X_test, y_train, y_test)
Accuracy on training set: 1.0 Accuracy on testing set: 0.99
classify the faces as people with and without glasses
First thing to do is to defne the range of the images that show faces wearing glasses.
The following list shows the indexes of these images:
# the index ranges of images of people with glasses
glasses = [
(10, 19), (30, 32), (37, 38), (50, 59), (63, 64),
(69, 69), (120, 121), (124, 129), (130, 139), (160, 161),
(164, 169), (180, 182), (185, 185), (189, 189), (190, 192),
(194, 194), (196, 199), (260, 269), (270, 279), (300, 309),
(330, 339), (358, 359), (360, 369)
]
Then we'll defne a function that from those segments returns a new target array that marks with 1 for the faces with glasses and 0 for the faces without glasses (our new target classes):
def create_target(segments):
# create a new y array of target size initialized with zeros
y = np.zeros(faces.target.shape[0])
# put 1 in the specified segments
for (start, end) in segments:
y[start:end + 1] = 1
return y
target_glasses = create_target(glasses)
So we must perform the training/testing split again.
X_train, X_test, y_train, y_test = train_test_split(faces.data, target_glasses, test_size=0.25, random_state=0)
Now let's create a new SVC classifer, and train it with the new target vector using the following command:
svc_2 = SVC(kernel='linear')
If we check the performance with cross-validation by the following code:
evaluate_cross_validation(svc_2, X_train, y_train, 5)
[ 1. 0.95 0.98333333 0.98333333 0.93333333]
Mean score: 0.970 (+/- 0.012)
We obtain a mean accuracy of 0.970 with cross-validation if we evaluate on our testing set.
train_and_evaluate(svc_2, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.99
Classification Report:
precision recall f1-score support 0.0 1.00 0.99 0.99 67
1.0 0.97 1.00 0.99 33 avg / total 0.99 0.99 0.99 100 Confusion Matrix:
[[66 1]
[ 0 33]]
Could it be possible that our classifer has learned to identify peoples' faces associated with glasses and without glasses precisely? How can we be sure that this is not happening and that if we get new unseen faces, it will work as expected? Let's separate all the images of the same person, sometimes wearing glasses and sometimes not. We will also separate all the images of the same person, the ones with indexes from 30 to 39, train by using the remaining instances, and evaluate on our new 10 instances set. With this experiment we will try to discard the fact that it is remembering faces, not glassed-related features.
X_test = faces.data[30:40]
y_test = target_glasses[30:40]
print(y_test.shape[0])
select = np.ones(target_glasses.shape[0])
select[30:40] = 0
X_train = faces.data[select == 1]
y_train = target_glasses[select == 1]
print(y_train.shape[0])
svc_3 = SVC(kernel='linear')
train_and_evaluate(svc_3, X_train, X_test, y_train, y_test)
10
390
Accuracy on training set:
1.0
Accuracy on testing set:
0.9
Classification Report:
precision recall f1-score support 0.0 0.83 1.00 0.91 5
1.0 1.00 0.80 0.89 5 avg / total 0.92 0.90 0.90 10 Confusion Matrix:
[[5 0]
[1 4]]
From the 10 images, only one error, still pretty good results, let's check out which one was incorrectly classifed. First, we have to reshape the data from arrays to 64 x 64 matrices:
y_pred = svc_3.predict(X_test)
eval_faces = [np.reshape(a, (64, 64)) for a in X_test]
Then plot with our print_faces function:
print_faces(eval_faces, y_pred, 10)
The image number 8 in the preceding fgure has glasses and was classifed as no glasses. If we look at that instance, we can see that it is different from the rest of the images with glasses (the border of the glasses cannot be seen clearly and the person is shown with closed eyes), which could be the reason it has been misclassifed.
sklearn学习笔记1的更多相关文章
- sklearn学习笔记之简单线性回归
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...
- sklearn学习笔记3
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...
- sklearn学习笔记2
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...
- sklearn学习笔记
用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交 ...
- sklearn学习笔记(一)——数据预处理 sklearn.preprocessing
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...
- sklearn学习笔记之岭回归
岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病 ...
- sklearn学习笔记之开始
简介 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了.scikit-learn简称sklearn,支持包括分类.回归.降维和聚类四大机器学习算法.还包含了特征 ...
- sklearn学习笔记(1)--make_blobs函数及相应参数简介
make_blobs方法: sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,cent ...
- Google TensorFlow深度学习笔记
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...
随机推荐
- eclipse maven plugin 插件 安装 和 配置
离线插件 点击下载离线安装包:eclipse-maven-plugin.zip ( for eclipse helios or higher ) .解压缩到任意目录(如这里的plugins目录): ...
- JAVA Web day03--- Android小白的第三天学习笔记
3.5.6.Math对象(了解) 无需创建,直接Math.方法来进行使用.(内置对象) Math方法 random() 随机生成0~1数字 round(x) 对X进行四舍五入 3.5.7.RegExp ...
- Android 学习第16课,java 包、类等相关的一些基础知识
1.建议将类放在包中,不要使用无名包 2.建议包名都用小写单词组成,不要用大写 3.建议包名用“域名的倒写.项目名.模块名”的形式,以确保包名的唯一性 注意:类变量与实例变量.类方法与实例方法的区别 ...
- Android 学习第12课,应用出错信息
应用在运行时,出现的错误信息都会在LogCat中显示 如果调出LogCat ? 菜单:窗口 -> 显示视图 -> 其他 -> LogCat
- JSON入门
一.简介 1.描述 1)JavaScript 对象表示法(JavaScript Object Notation) 2)存储和交换文本信息的语法.类似 XML 3)比 XML 更 ...
- C++ 类知识点
1. member function definitions are processed after the compiler processes all of the declarations in ...
- 【python】jiraAPI使用教程 自动创建jira问题单并置状态为OPEN
环境依赖 : python库 redis jira 安装命令:pip install redis pip install jira redis服务安装命令: $sudo apt-get update ...
- 关于a和b不用第三变量交换值的问题
今天在如鹏网(不是发广告)上看到一道题,题目很难就不说了,但是老师给的提示的题目却让我感兴趣,就是标题的内容. 题目是把a与b做异或比较从而实现不通过第三变量来交换a和b的数值答案是这样的: a=a^ ...
- canvas 画字
用canvas画字还是头一回,要想和UI设计的画的一模一样还是真有些苦难,不过现在实现的效果已经很像了. <!--通过字体文件引入字体--><style>@font-face ...
- Windows快速删除文件脚本
1.新建一个txt文件 2.将DEL /F /A /Q \\?\%1RD /S /Q \\?\%1这段代码放在新建好的txt文件中 3.将txt文件的后缀名改为.bat 4.将这个文件放在需要删除的文 ...