【转载】Chaotic Time-Series Prediction
原文地址:https://cn.mathworks.com/help/fuzzy/examples/chaotic-time-series-prediction.html?requestedDomain=www.mathworks.com
This example shows how to do chaotic time series prediction using ANFIS.
Time Series Data
The data is generated from the Mackey-Glass time-delay differential equation which is defined by
dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)
When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)
load mgdata.dat
a = mgdata;
time = a(:, 1);
x_t = a(:, 2);
plot(time, x_t);
xlabel('Time (sec)','fontsize',10); ylabel('x(t)','fontsize',10);
title('Mackey-Glass Chaotic Time Series','fontsize',10);
Preprocessing the Data
Now we want to build an ANFIS that can predict x(t+6) from the past values of this time series, that is, x(t-18), x(t-12), x(t-6), and x(t). Therefore the training data format is
[x(t-18), x(t-12), x(t-6), x(t); x(t+6]
From t = 118 to 1117, we collect 1000 data pairs of the above format. The first 500 are used for training while the others are used for checking. The plot shows the segment of the time series where data pairs were extracted from. The first 100 data points are ignored to avoid the transient portion of the data.
trn_data = zeros(500, 5);
chk_data = zeros(500, 5); % prepare training data
trn_data(:, 1) = x_t(101:600);
trn_data(:, 2) = x_t(107:606);
trn_data(:, 3) = x_t(113:612);
trn_data(:, 4) = x_t(119:618);
trn_data(:, 5) = x_t(125:624); % prepare checking data
chk_data(:, 1) = x_t(601:1100);
chk_data(:, 2) = x_t(607:1106);
chk_data(:, 3) = x_t(613:1112);
chk_data(:, 4) = x_t(619:1118);
chk_data(:, 5) = x_t(625:1124); index = 119:1118; % ts starts with t = 0
plot(time(index), x_t(index));
xlabel('Time (sec)','fontsize',10); ylabel('x(t)','fontsize',10);
title('Mackey-Glass Chaotic Time Series','fontsize',10);
Building the ANFIS Model
We use GENFIS1 to generate an initial FIS matrix from training data. The command is quite simple since default values for MF number (2) and MF type ('gbellmf') are used:
fismat = genfis1(trn_data); % The initial MFs for training are shown in the plots.
for input_index=1:4,
subplot(2,2,input_index)
[x,y]=plotmf(fismat,'input',input_index);
plot(x,y)
axis([-inf inf 0 1.2]);
xlabel(['Input ' int2str(input_index)],'fontsize',10);
end
There are 2^4 = 16 rules in the generated FIS matrix and the number of fitting parameters is 108, including 24 nonlinear parameters and 80 linear parameters. This is a proper balance between number of fitting parameters and number of training data (500). The ANFIS command looks like this:
[trn_fismat,trn_error] = anfis(trn_data, fismat,[],[],chk_data)
To save time, we will load the training results directly.
After ten epochs of training, the final MFs are shown in the plots. Note that these MFs after training do not change drastically. Obviously most of the fitting is done by the linear parameters while the nonlinear parameters are mostly for fine- tuning for further improvement.
% load training results
load mganfis % plot final MF's on x, y, z, u
for input_index=1:4,
subplot(2,2,input_index)
[x,y]=plotmf(trn_fismat,'input',input_index);
plot(x,y)
axis([-inf inf 0 1.2]);
xlabel(['Input ' int2str(input_index)],'fontsize',10);
end
Error Curves
This plot displays error curves for both training and checking data. Note that the training error is higher than the checking error. This phenomenon is not uncommon in ANFIS learning or nonlinear regression in general; it could indicate that the training process is not close to finished yet.
% error curves plot
close all;
epoch_n = 10;
plot([trn_error chk_error]);
hold on; plot([trn_error chk_error], 'o'); hold off;
xlabel('Epochs','fontsize',10);
ylabel('RMSE (Root Mean Squared Error)','fontsize',10);
title('Error Curves','fontsize',10);
Comparison
This plot shows the original time series and the one predicted by ANFIS. The difference is so tiny that it is impossible to tell one from another by eye inspection. That is why you probably see only the ANFIS prediction curve. The prediction errors must be viewed on another scale.
input = [trn_data(:, 1:4); chk_data(:, 1:4)];
anfis_output = evalfis(input, trn_fismat);
index = 125:1124;
plot(time(index), [x_t(index) anfis_output]);
xlabel('Time (sec)','fontsize',10);
Prediction Errors of ANFIS
Prediction error of ANFIS is shown here. Note that the scale is about a hundredth of the scale of the previous plot. Remember that we have only 10 epochs of training in this case; better performance is expected if we have extensive training.
diff = x_t(index)-anfis_output;
plot(time(index), diff);
xlabel('Time (sec)','fontsize',10);
title('ANFIS Prediction Errors','fontsize',10);
【转载】Chaotic Time-Series Prediction的更多相关文章
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
- (zhuan) LSTM Neural Network for Time Series Prediction
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- Autocorrelation in Time Series Data
Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- cnn,rnn,dnn
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? https://www.zhihu.com/question/34681168 CNN(卷积神经网络) ...
随机推荐
- JavaScript—赋值表达式
赋值表达式的运算顺序是从右到左的,因此,可以通过以下方法对多个变量赋值 1 i=j=k=0;//也就是把三个变量初始化为0 赋值表达式中的递增和递减 n++和++n的区别: 简单来说,根据 ...
- LCD底层驱动分析
根据分析的框架,自己写一个LCD驱动程序 1分析LCD硬件原理图 Von和Voff接的是一个电源电路,通过LCD_POWER接的是GPG4来控制LCD电源,高电平表示开启LCD电源 VM接的是CPU的 ...
- 第七篇——Mobile Apps,软件的曙光。
作业三: ShrinkWrap (在包装盒子里面的软件,软件在CD/DVD上): Web APP (基于网页的软件): Internal Software (企业或学校或某组织内部的软件): Game ...
- 位置指纹(LF)定位技术简介-室内定位
信号的多径传播对环境具有依赖性,呈现出非常强的特殊性.对于每个位置而言,该位置上信道的多径结构是惟一的,终端发射的无线电渡经过反射和折射,产生与周围环境密切相关的特定模式的多径信号,这样的多径 ...
- SQL 基本知识
四个基础语法 1. insert into 表名 (列名) [values] 值列表 insert into 表名 values 值列表 [扩展]插入多行: 1. insert into <表名 ...
- [解决方案] pythonchallenge level 1
http://www.pythonchallenge.com/pc/def/map.html g fmnc wms bgblr rpylqjyrc gr zw fylb. rfyrq ufyr amk ...
- 深入浅出REST
不知你是否意识到,围绕着什么才是实现异构的应用到应用通信的“正确”方式,一场争论正进行的如火如荼:虽然当前主流的方式明显地集中在基于SOAP.WSDL和WS-*规范的Web Services领域,但也 ...
- 自定义Toast解决快速点击时重复弹出,排队无止尽
解决办法:自定义MyToast类: public class MyToast { /** 之前显示的内容 */ private static String oldMsg ; /** Toast对象 * ...
- Android开源控件PhotoView的使用
整体来说,它是一个更高级的ImageView,支持缩放,多点触控缩放,滚动和滑动,单机,长按等事件: PhotoView的git托管地址:https://github.com/chrisbanes/P ...
- Android通过webservice连接SQLServer 详细教程(数据库+服务器+客户端)
http://blog.csdn.net/zhyl8157121/article/details/8169172 目录(?)[-] 项目说明 开发环境的部署 数据库设计 服务器端程序设计Webserv ...