GWAS Simulation
comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map
1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno
2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh
3, copy SB.map to 30 different SB-*.map
python ../CPmapTOmore.py 30 SB-
4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd
5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd
Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled
2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh
3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py 100 SB-shuffle-
4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd
5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd
6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt
Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-
generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30
事实证明:
平均数取8, 20, 100 模拟结果一样
effect value 取0.9 和0.9*20 结果也一样,
表面结果不同是由于FDR不同导致的。
观察average power in different MAF region:
WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output
python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output
$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。
整体分布:
WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed
python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:
WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100
python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:
一样的表型很少。


calculate average power of various heritability:
1,generate new phenotype data containing heritability
cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100
python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-
cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H
mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .
cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .
python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh
python ../CPmapTOmore.py 30 SB-
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd
Statistical results in Sorghum:

统计结果图:


MAF distribution in Seteria Italic:
python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。
去除SB和SI中MAF 小于0.05的markers!
Transfer SI GT format to HMP format(SI directory):
python GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp
SI 有726080 个markers
WD: SB_VS_SI/
python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers
python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers
重新画MAF分布图 看两者是否相近,相近的话随机选择marker!
SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:
python selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp
重新做分布图:

cmiao
UNL
beadle center
GWAS Simulation的更多相关文章
- causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation
先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...
- GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...
- GWAS Catalog数据库简介
GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...
- 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因
Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...
- Gate level Simulation(门级仿真)
1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...
- fdtd simulation, plotting with gnuplot, writting in perl
# 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...
- 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation
原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...
- dipole antenna simulation by CST
CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...
- Logic and Fault simulation
fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...
随机推荐
- [css]零散的重构知识
1.不建议这样写 font-family:"微软雅黑"; 建议 font-family:Microsoft YaHei; 因为有些网站不兼容中文(GB2312)的字符
- LeetCode 6 ZigZag Conversion 模拟 难度:0
https://leetcode.com/problems/zigzag-conversion/ The string "PAYPALISHIRING" is written in ...
- Adapter 启动时报错——2
在安装tibco adr3 7.00以前的版本,在designer中启动adr3 会报出“无法加载adr3.dll”文件的错误,这是因为在designer中的palettes默认是指向adapter ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- Can't update: no tracked branch
git更新错误:Can't update: no tracked branch No tracked branch configured for branch master. To make your ...
- java常用注释
@see 加入超链接 @see 类名 @see 完整类名 @see 完整类名#方法名 @version 版本信息 @author 作者信息 @param 参数名 说明 @return 说明 @exce ...
- HTML5与CSS3经典代码
1)全屏背景 body { background: url(../img/pic.jpg) no-repeat center center fixed; background-size: cover; ...
- Total Commander 8.52 Beta 1
Total Commander 8.52 Beta 1http://www.ghisler.com/852_b1.php 10.08.15 Release Total Commander 8.52 b ...
- LRU Cache实现
最近在看Leveldb源码,里面用到LRU(Least Recently Used)缓存,所以自己动手来实现一下.LRU Cache通常实现方式为Hash Map + Double Linked Li ...
- mysql 新建用户、授权、远程访问
新建用户 insert into mysql.user(Host,User,Password) values("localhost","u",password( ...