comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map

1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno

2, combine pheno, ped1, ped2 to intact ped file

python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh

3, copy SB.map to 30 different SB-*.map
 python ../CPmapTOmore.py 30 SB-

4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd

Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled

2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh

3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py  100 SB-shuffle-

4, *map, *ped to *bed, *bim, *fam
 python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd

6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt

Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-

generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30

事实证明:

平均数取8, 20, 100 模拟结果一样

effect value 取0.9 和0.9*20 结果也一样,

表面结果不同是由于FDR不同导致的。

观察average power in different MAF region:

WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output

python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output

$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。

整体分布:

WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed

python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100

python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:

一样的表型很少。

calculate average power of various heritability:

1,generate new phenotype data containing heritability

cd  /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100

python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-

cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H

mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .

cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .

python ../genCombine.py phenoPrefix 30 > combine.sh

parallel -j 30 < combine.sh

python ../CPmapTOmore.py 30 SB-

python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd

python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd

Statistical results in Sorghum:

统计结果图:

MAF distribution in Seteria Italic:

python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。

去除SB和SI中MAF 小于0.05的markers!

Transfer SI GT format to HMP format(SI directory):

python  GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp

SI 有726080 个markers

WD: SB_VS_SI/

python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers

python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers

重新画MAF分布图 看两者是否相近,相近的话随机选择marker!

SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:

python  selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp

重新做分布图:

cmiao

UNL

beadle center

GWAS Simulation的更多相关文章

  1. causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation

    先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...

  2. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  3. GWAS Catalog数据库简介

    GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...

  4. 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因

    Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...

  5. Gate level Simulation(门级仿真)

    1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...

  6. fdtd simulation, plotting with gnuplot, writting in perl

    # 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...

  7. 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation

    原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...

  8. dipole antenna simulation by CST

    CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...

  9. Logic and Fault simulation

    fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...

随机推荐

  1. [css]零散的重构知识

    1.不建议这样写 font-family:"微软雅黑"; 建议 font-family:Microsoft YaHei; 因为有些网站不兼容中文(GB2312)的字符

  2. LeetCode 6 ZigZag Conversion 模拟 难度:0

    https://leetcode.com/problems/zigzag-conversion/ The string "PAYPALISHIRING" is written in ...

  3. Adapter 启动时报错——2

    在安装tibco adr3  7.00以前的版本,在designer中启动adr3 会报出“无法加载adr3.dll”文件的错误,这是因为在designer中的palettes默认是指向adapter ...

  4. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  5. Can't update: no tracked branch

    git更新错误:Can't update: no tracked branch No tracked branch configured for branch master. To make your ...

  6. java常用注释

    @see 加入超链接 @see 类名 @see 完整类名 @see 完整类名#方法名 @version 版本信息 @author 作者信息 @param 参数名 说明 @return 说明 @exce ...

  7. HTML5与CSS3经典代码

    1)全屏背景 body { background: url(../img/pic.jpg) no-repeat center center fixed; background-size: cover; ...

  8. Total Commander 8.52 Beta 1

    Total Commander 8.52 Beta 1http://www.ghisler.com/852_b1.php 10.08.15 Release Total Commander 8.52 b ...

  9. LRU Cache实现

    最近在看Leveldb源码,里面用到LRU(Least Recently Used)缓存,所以自己动手来实现一下.LRU Cache通常实现方式为Hash Map + Double Linked Li ...

  10. mysql 新建用户、授权、远程访问

    新建用户 insert into mysql.user(Host,User,Password) values("localhost","u",password( ...