原文地址:http://blog.fawnanddoug.com/2012/08/how-those-spring-enable-annotations-work.html

Spring's Java Config is a great way to configure your application without writing a lot of configuration code.  One reason is those awesome @Enable* annotations that let you magically set up things like Transactions (@EnableTransactionManagement), Spring MVC (@EnableWebMvc) or timed jobs (@EnableScheduling) with a simple class level annotation on your configuration class. These simple statements provide a lot of functionality but their machinations are fairly obscure.  On the one hand, it's great to get so much functionality for so little work, but on the other hand, if you don't understand how something works it makes debugging and problem solving much harder.  I couldn't find any posts or documents that covered how those annotations work so I figured I would write up one based on the research I did while debugging.  I don't work for Spring and I didn't write any of this code so please post any corrections or improvements in the comments and I'll update the post.

Design Goals

From what I can tell, the design goal of those @Enable* annotations is to allow the user set up complex functionality with a minimal amount of code.  In addition, it seems clear that users must be able to use either a  simple default or be allowed to manually configure that code.  Finally, the complexities of the code are intended to be hidden from the user.  In short, let the user set up a lot of beans and optionally configure them without having to know the details of those beans (or really what's being set up).  I think there are a lot of pros (and some cons) to this approach but I'll discuss that at the end.

Case #1: @EnableScheduling (importing an @Configuration class)

The first thing to note is that the @Enable* annotations are not magic.  Nothing in the Bean Factory knows anything about them specifically and there are no dependencies in the Bean Factory classes between the core functionality and specific annotations (like @EnableWebMvc) or the jars they're stored in (like spring-web).  Let's take a look at @EnableScheduling and see how it works.  You might have a MainConfig class that looks like this:

1
2
3
4
5
@Configuration
@EnableScheduling
public class MainConfig {
// some beans go in here
}

There's nothing special in the above. Just a standard Java Config that's annotated with @EnableScheduling. @EnableScheduling lets you execute certain methods at a set frequency. For example, you can run BankService.sendMoneyToDoug() every 20 minutes.   The @EnableScheduling annotation itself looks like this:

1
2
3
4
5
6
7
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Import(SchedulingConfiguration.class)
@Documented
public @interface EnableScheduling {
 
}

If we look at the annotation above, we can see that it is just a standard Class level annotation (@Target/@Retention) that should be included in JavaDocs (@Documented), but it has one Spring-specific annotation: @Import.  @Import is the key that ties everything together.  In this case, since our MainConfig is annotated as @EnableScheduling, when the Bean Factory is parsing the file (technically the ConfigurationClassPostProcessor is parsing it) it will also find the @Import(SchedulingConfiguration.class) annotation and it will import the class defined in the value.  In this case SchedulingConfiguration.  What does it mean to import?  Well, in this case it's just treated as another Spring bean.  SchedulingConfiguration is actually annotated as @Configuration, so the Bean Factory will see it as another configuration class and all of the beans defined in that class will get pulled into your Application Context just as if you had defined another @Configuration class yourself.  If we inspect SchedulingConfiguration we can see that it only defines one bean (a Post Processor) which does the scheduling we described above.

1
2
3
4
5
6
7
8
9
10
@Configuration
public class SchedulingConfiguration {
 
 @Bean(name=AnnotationConfigUtils.SCHEDULED_ANNOTATION_PROCESSOR_BEAN_NAME)
 @Role(BeanDefinition.ROLE_INFRASTRUCTURE)
 public ScheduledAnnotationBeanPostProcessor scheduledAnnotationProcessor() {
  return new ScheduledAnnotationBeanPostProcessor();
 }
 
}

OK, but what if I want to configure the beans defined in SchedulingConfiguration?  Well, at this point we're just dealing with regular beans.  So the same mechanisms that you would use for any other beans apply here.  In this case, the ScheduledAnnotationBeanPostProcessor uses a standard Spring Application Event to find out when the Application Context is refreshed.  When this happens it checks to see if any beans implement SchedulingConfigurer and if so, uses those beans to configure itself.  This is not at all intuitive (or easy to find with an IDE) but it is completely separated from the Bean Factory and is a fairly common pattern for a bean to be used to configure another bean.  And now that we can connect all of the dots it is (somewhat) easy to find (or you could google the documentation or read the JavaDocs).

Case #2: @EnableTransactionManagement (importing an ImportSelector)

In the previous case we discussed how an annotation like @EnableScheduling can use @Import to pull in another @Configuration Class and make all of its beans available (and configurable) to your application. But what happens if you want to load a different set of beans based on some configuration?  @EnableTransactionManaged is a good example of this.  You might have a MainConfig class that looks like this:
 
1
2
3
4
5
@Configuration
@EnableTransactionManagement(mode=AdviceMode.ASPECTJ)
public class MainConfig {
// some beans
}
 
Once again, there's  nothing special in the above. Just a standard Java Config that's annotated with @EnableTransactionManagement. The only thing that's a little different from the previous example is that the user specified a parameter to the annotation (mode=AdviceMode.ASPECTJ).  The @EnableTransactionManagement annotation itself looks like this:

1
2
3
4
5
6
7
8
9
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(TransactionManagementConfigurationSelector.class)
public @interface EnableTransactionManagement {
 boolean proxyTargetClass() default false;
 AdviceMode mode() default AdviceMode.PROXY;
 int order() default Ordered.LOWEST_PRECEDENCE;
}

As before, a fairly standard annotation, although this time it has some parameters.  However, I mentioned previously that the @Import annotation was the key that ties everything together and that is true once again.  The distinction though, is that this time we are importing TransactionManagementConfigurationSelector.class which is not a class that is annotated with @Configuration.  TransactionManagementConfigurationSelector is a class that implements ImportSelector.  The purpose of ImportSelector is to allow your code to choose which configuration classes to load at runtime.  It has one method that takes some metadata about an annotation and returns an array of class names.  In this case, the TransactionManagementConfigurationSelector looks at the mode and returns some classes based on the mode:

1
2
3
4
5
6
7
8
9
10
protected String[] selectImports(AdviceMode adviceMode) {
 switch (adviceMode) {
  case PROXY:
   return new String[] { AutoProxyRegistrar.class.getName(), ProxyTransactionManagementConfiguration.class.getName() };
  case ASPECTJ:
   return new String[] { TransactionManagementConfigUtils.TRANSACTION_ASPECT_CONFIGURATION_CLASS_NAME };
  default:
   return null;
 }
}

Most of these classes are @Configuration classes (e.g. ProxyTransactionManagementConfiguration) so we know that they'll work like before, but some of them are not (let's ignore those for now).  For the @Configuration classes they get loaded and configured in the exact same way that we previously saw.  So in short, we can use @Import with an @Configuration class to load a standard set of beans or we can use @Import with an ImportSelector to load a set of beans that are decided at run time.  Sweet! But what about those classes we ignored?

Case #3: @EnableAspectJAutoProxy (importing at the Bean Definition Level)

@Import supports one last case which is when you want to deal with a Bean Registry (Factory) directly. If you need to manipulate the Bean Factory or work with beans at the Bean Definition level then this case is for you and it's very similar to the ones above.  Your MainConfig might look like:

1
2
3
4
5
@Configuration
@EnableAspectJAutoProxy
public class MainConfig {
// some beans
}

Once again, there's nothing special in the above. Just a standard Java Config that's annotated with @EnableAspectJAutoProxy.  Here's the source for @EnableAspectJAutoProxy:

1
2
3
4
5
6
7
8
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(AspectJAutoProxyRegistrar.class)
public @interface EnableAspectJAutoProxy {
 boolean proxyTargetClass() default false;
 
}

As before, the @Import is the key, but this time it's pointing to AspectJAutoProxyRegistrar which is neither an @Configuration class nor implements ImportSelector.  The trick this time is that it implements ImportBeanDefinitionRegistrar.  This interface gives access to the Bean Registry and Annotation Metadata so that we can manipulate the registry at runtime based off of the parameters in the annotation.  If you look at the previous case you can see that the classes we ignored were also ImportBeanDefinitionRegistrars.  These classes directly manipulate the Bean  Factory for those times when @Configuration classes aren't enough.

So now we've covered all of the different ways the @Enable* annotations use @Import to pull various beans into your Application Context.  They either pull in a set of @Configuration classes directly and all of the beans from those classes get imported into your Application Context.  Or they pull in an ImportSelector which chooses a set of @Configuration classes at runtime and imports those beans into your Application Context.  Or finally, they pull in an ImportBeanDefinitionRegistrars which can directly work with the Bean Factory at the Bean Definition level.

Conclusion

In general I think this approach to importing beans into an Application Context is great because it makes set up very easy for the developer.  Unfortunately it obscures how to find the available options and how to configure them.  In addition, it doesn't directly take advantage of the IDE so it's hard to tell which beans are being created (and why).  However, now that we know about the @Import annotation we can use our IDE to dig a little into each Annotation and its related configuration classes and understand which beans are being created, how they're being added to your Application Context and how to configure them.  I hope this helps! Please leave comments to let me know what you think and what I've missed / messed up.

How those spring enable annotations work--转的更多相关文章

  1. Spring Enable annotation – writing a custom Enable annotation

    原文地址:https://www.javacodegeeks.com/2015/04/spring-enable-annotation-writing-a-custom-enable-annotati ...

  2. Spring Enable* 注解

    Spring提供了一系列以Enable开头的注解,这些注解本质上是激活Spring的某些管理功能.比如,EnableWebMvc. 这个注解引入了MVC框架在Spring 应用中需要用到的所有bean ...

  3. Spring Project Annotations

       Project  Annotation  Discovered By  Package     Target(s)  Parameters  Notes . AspectJ @EnableSpr ...

  4. Spring Enable*高级应用及原理

    Enable* 之前的文章用到了一些Enable*开头的注解,比如EnableAsync.EnableScheduling.EnableAspectJAutoProxy.EnableCaching等, ...

  5. Spring Enable高级应用及原理

    Enable* 之前的文章用到了一些Enable*开头的注解,比如EnableAsync.EnableScheduling.EnableAspectJAutoProxy.EnableCaching等, ...

  6. 译:Spring框架参考文档之IoC容器(未完成)

    6. IoC容器 6.1 Spring IoC容器和bean介绍 这一章节介绍了Spring框架的控制反转(IoC)实现的原理.IoC也被称作依赖注入(DI).It is a process wher ...

  7. Developing JSF applications with Spring Boot

    Developing JSF applications with Spring Boot Spring Boot can leverage any type of applications, not ...

  8. spring@PropertySource用法

    测试例子 package com.hjzgg.auth.config; import org.springframework.beans.factory.annotation.Autowired; i ...

  9. Spring框架文档与API(4.3.6版本)

    http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/ Table of Contents I ...

随机推荐

  1. ABP入门系列(1)——学习Abp框架之实操演练

    作为.Net工地搬砖长工一名,一直致力于挖坑(Bug)填坑(Debug),但技术却不见长进.也曾热情于新技术的学习,憧憬过成为技术大拿.从前端到后端,从bootstrap到javascript,从py ...

  2. iOS代码规范(OC和Swift)

    下面说下iOS的代码规范问题,如果大家觉得还不错,可以直接用到项目中,有不同意见 可以在下面讨论下. 相信很多人工作中最烦的就是代码不规范,命名不规范,曾经见过一个VC里有3个按钮被命名为button ...

  3. OpenCV人脸识别LBPH算法源码分析

    1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...

  4. AFNetworking 3.0 源码解读 总结(干货)(上)

    养成记笔记的习惯,对于一个软件工程师来说,我觉得很重要.记得在知乎上看到过一个问题,说是人类最大的缺点是什么?我个人觉得记忆算是一个缺点.它就像时间一样,会自己消散. 前言 终于写完了 AFNetwo ...

  5. JS继承之寄生类继承

    原型式继承 其原理就是借助原型,可以基于已有的对象创建新对象.节省了创建自定义类型这一步(虽然觉得这样没什么意义). 模型 function object(o){ function W(){ } W. ...

  6. WebGIS项目中利用mysql控制点库进行千万条数据坐标转换时的分表分区优化方案

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1. 背景 项目中有1000万条历史案卷,为某地方坐标系数据,我们的真实 ...

  7. Response.Redirect引起的性能问题分析

    现象: 最近做的一个系统通过单点登录(SSO) 技术验证用户登录.用户在SSO 系统上通过验证后,跳转到该系统的不同模块.而跳转的时间一直维持子啊几分钟左右. 分析步骤: 在问题复现时抓取Hang d ...

  8. git多账号登录问题

    作者:白狼 出处:http://www.manks.top/git-multiply-accounts.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文 ...

  9. Form 表单提交参数

    今天因为要额外提交参数数组性的参数给form传到后台而苦恼了半天,结果发现,只需要在form表单对应的字段html空间中定义name = 后台参数名 的属性就ok了. 后台本来是只有模型参数的,但是后 ...

  10. git图像化界面GUI的使用

    GIT学习笔记 一.        基础内容 1.git是一个版本控制软件,与svn类似,特点是分布式管理,不需要中间总的服务器,可以增加很多分支. 2.windows下的git叫msysgit,下载 ...