CAS(Compare And Swap)导致的ABA问题

问题描述

多线程情况下,每个线程使用CAS操作欲将数据A修改成B,当然我们只希望只有一个线程能够正确的修改数据,并且只修改一次。当并发的时候,其中一个线程已经将A成功的改成了B,但是在线程并发调度过程中尚未被调度,在这个期间,另外一个线程(不在并发中的请求线程)将B又修改成了A,那么原来并发中的线程又可以通过CAS操作将A改成B

测试用例:

public class AbaPro {

    private static final Random RANDOM = new Random();
private static final String B = "B";
private static final String A = "A";
public static final AtomicReference<String> ATOMIC_REFERENCE = new AtomicReference<>(A); public static void main(String[] args) throws InterruptedException {
final CountDownLatch startLatch = new CountDownLatch(1); Thread[] threads = new Thread[20];
for (int i=0; i < 20; i++){
threads[i] = new Thread(){
@Override
public void run() {
String oldValue = ATOMIC_REFERENCE.get();
try {
startLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
Thread.sleep(RANDOM.nextInt()&500);
} catch (InterruptedException e) {
e.printStackTrace();
} if (ATOMIC_REFERENCE.compareAndSet(oldValue, B )){
System.out.println(Thread.currentThread().getName()+ " 已经对原始值进行了修改,此时值为: "+ ATOMIC_REFERENCE.get());
}
}
};
threads[i].start();
} startLatch.countDown();
Thread.sleep(200); new Thread(){ @Override
public void run() {
try {
Thread.sleep(RANDOM.nextInt() & 200);
} catch (InterruptedException e) {
e.printStackTrace();
}
String oldVal = ATOMIC_REFERENCE.get();
while (!ATOMIC_REFERENCE.compareAndSet(ATOMIC_REFERENCE.get(), A));
System.out.println(Thread.currentThread().getName() +" 已经将值 "+oldVal+" 修改成原始值: A");
} }.start();
} }

结果:

Thread-12 已经对原始值进行了修改,此时值为: B
Thread-20 已经将值 B 修改成原始值: A
Thread-14 已经对原始值进行了修改,此时值为: B

可以看到并发中的线程Thread-12已经成功的将A修改成B,其他线程Thread-20在某一时刻将B修改成A,而并发中的线程Thread-14又能再次成功的将A修改成B,虽然最终结果是B,但是中途经历了一次被修改的过程,在某些情况下是致使的

解决方案

java中提供了AtomicStampedReference来解决这个问题,它是基于版本或者是一种状态,在修改的过程中不仅对比值,也同时会对比版本号

public class AabProResolve {

    private static final Random RANDOM = new Random();
private static final String B = "B";
private static final String A = "A"; private static final AtomicStampedReference<String> ATOMIC_STAMPED_REFERENCE = new AtomicStampedReference<>(A,0); public static void main(String[] args) throws InterruptedException { final CountDownLatch startLatch = new CountDownLatch(1);
Thread[] threads = new Thread[20]; for (int i=0; i < 20; i++){
threads[i] = new Thread(){ @Override
public void run() {
String oldValue = ATOMIC_STAMPED_REFERENCE.getReference();
int stamp = ATOMIC_STAMPED_REFERENCE.getStamp(); try {
startLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
Thread.sleep(RANDOM.nextInt() & 500);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (ATOMIC_STAMPED_REFERENCE.compareAndSet(oldValue, B, stamp, stamp+1)){
System.out.println(Thread.currentThread().getName()+ " 已经对原始值: "+oldValue+" 进行了修改,此时值为: "+ ATOMIC_STAMPED_REFERENCE.getReference());
}
}
};
threads[i].start();
}
Thread.sleep(200);
startLatch.countDown(); new Thread(){
@Override
public void run() { try {
Thread.sleep(RANDOM.nextInt() & 200);
} catch (InterruptedException e) {
e.printStackTrace();
}
int stamp = ATOMIC_STAMPED_REFERENCE.getStamp();
String oldVal = ATOMIC_STAMPED_REFERENCE.getReference();
while (!ATOMIC_STAMPED_REFERENCE.compareAndSet(
B,
A,stamp, stamp+1)){
stamp = ATOMIC_STAMPED_REFERENCE.getStamp();
}
System.out.println(Thread.currentThread().getName() +" 已经将值 "+oldVal+" 修改成原始值: A"); }
}.start(); } }

结果:

Thread-1 已经对原始值: A 进行了修改,此时值为: B
Thread-20 已经将值 B 修改成原始值: A

可以看到并发期间的线程只有Thread-1对A进行了修改,保证了只有一个线程对数据的修改,短暂的并发时间之后的其他线程Thread-20对其修改自然也就没有影响、

优化方案,可以参考:

https://blog.csdn.net/wufaliang003/article/details/78797203

Java并发编程原理与实战四十三:CAS ---- ABA问题的更多相关文章

  1. Java并发编程原理与实战四十二:锁与volatile的内存语义

    锁与volatile的内存语义 1.锁的内存语义 2.volatile内存语义 3.synchronized内存语义 4.Lock与synchronized的区别 5.ReentrantLock源码实 ...

  2. Java并发编程原理与实战三十三:同步容器与并发容器

    1.什么叫容器? ----->数组,对象,集合等等都是容器.   2.什么叫同步容器? ----->Vector,ArrayList,HashMap等等.   3.在多线程环境下,为什么不 ...

  3. Java并发编程原理与实战四十:JDK8新增LongAdder详解

    传统的原子锁AtomicLong/AtomicInt虽然也可以处理大量并发情况下的计数器,但是由于使用了自旋等待,当存在大量竞争时,会存在大量自旋等待,而导致CPU浪费,而有效计算很少,降低了计算效率 ...

  4. Java并发编程原理与实战四十五:问题定位总结

    背景   “线下没问题的”. “代码不可能有问题 是系统原因”.“能在线上远程debug么”    线上问题不同于开发期间的bug,与运行时环境.压力.并发情况.具体的业务相关.对于线上的问题利用线上 ...

  5. Java并发编程原理与实战四十一:重排序 和 happens-before

    一.概念理解 首先我们先来了解一下什么是重排序:重排序是指编译器和处理器为了优化程序性能而对指令序列进行重新排序的一种手段. 从Java源代码到最终实际执行的指令序列,会分别经历下面3种重排序,如下图 ...

  6. Java并发编程原理与实战四十四:final域的内存语义

    一.final域的重排序规则 对于final域,编译器和处理器要遵循两个重拍序规则: 1.在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序 ...

  7. Java并发编程原理与实战二十三:Condition原理分析

    先来回顾一下java中的等待/通知机制 我们有时会遇到这样的场景:线程A执行到某个点的时候,因为某个条件condition不满足,需要线程A暂停:等到线程B修改了条件condition,使condit ...

  8. Java并发编程原理与实战四:线程如何中断

    如果你使用过杀毒软件,可能会发现全盘杀毒太耗时间了,这时你如果点击取消杀毒按钮,那么此时你正在中断一个运行的线程. java为我们提供了一种调用interrupt()方法来请求终止线程的方法,下面我们 ...

  9. Java并发编程原理与实战五:创建线程的多种方式

    一.继承Thread类 public class Demo1 extends Thread { public Demo1(String name) { super(name); } @Override ...

随机推荐

  1. 团队作业4--第一项目冲刺3(Aplpha)

    1.会议 第三次会议: ①:总结前两天出现的问题 ②:总结前端学习的心得 ③:安排后两天任务 2.任务安排 3.任务分解图 4.燃尽图 5.适当的项目程序/模块的最新(运行)截图 6.心得 组员之间要 ...

  2. UDP与TCP笔记

    1.UDP UDP协议在工作时是建立在IP协议之上的,UDP从进程的缓冲区接收进程每一次产生的输出,对每次输出都生成一个UDP数据报,然后把生成的UDP数据报直接封装在IP数据报中进行传输,因此在传输 ...

  3. 关于jsonp知识的理解

    jsonp 之前知道是用来解决ajax跨域的问题,但是其本质的原理,还是不清楚. 所以看了一下. js的script 的src里面的连接是可以跨域的,所以可以通过她来实现跨域资源获取. 但是也需要后端 ...

  4. Gulp插件笔记

    初次接触Gulp是出于网页模块化的需要,用过之后发现这个任务管理工具有很多实用的插件,意外地好用,于是打算写下这篇笔记把用到的Gulp插件记录一下.至于想了解Gulp基本用法的同学可以去Gulp官网查 ...

  5. “四则运算生成程序——GUI支持和部分功能改进”链接

    项目成员:张金生     张政 <正文随笔发布在张金生博客中> 四则运算生成程序——GUI支持和部分功能改进

  6. HDU 1027 打印沙漏

    https://pintia.cn/problem-sets/994805260223102976/problems/994805294251491328 本题要求你写个程序把给定的符号打印成沙漏的形 ...

  7. 使用pt-query-digest,找到不是很合适的sql

    pt-query-digest 1.  概述 索引可以我们更快速的执行查询,但是肯定存在不合理的索引,如果想找到那些索引不是很合适的查询,并在它们成为问题前进行优化,则可以使用pt-query-dig ...

  8. 用go实现的一个堆得数据结构

    用golang实现的堆,主要提供了两个方法,push和pop及堆的大小,代码如下: package main import ( "errors" "fmt" ) ...

  9. PHP ini_set

    PHP ini_set用来设置php.ini的值,在函数执行的时候生效,对于虚拟空间来说,很方便,下面为大家介绍下此方法的使用   PHP ini_set用来设置php.ini的值,在函数执行的时候生 ...

  10. TFS(Team Foundation Server) 权限设置记录

    环境: TFS2012 + win7 1.安装好TFS 2.创建系统用户组: TFSAdmins.TFSDevs.TFSUsers 分别为TFS管理人员组.TFS开发人员组.TFS普通用户组. 如下图 ...