题目链接

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:

  1. V' = V.
  2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2

3 3

1 2 1

2 3 2

3 1 3

4 4

1 2 2

2 3 2

3 4 2

4 1 2

Sample Output

3

Not Unique!

分析:

给定一个连通同,我们可以求出这个图的最小生成树,但是问题在于让我们判断这棵最小生成树是不是唯一的。

首先这里涉及到次小生成树,要求次小生成树,我们可以假设T是G的最小生成树,依次枚举T中的边并去掉,再求最小生成树,所得的这些值中的最小值就是次小生成树的值(当然,去掉一条边后,剩下的边能够形成次小生成树)。次小生成树的值可能等于最小生成树,也有可能比最小生成树大。

判断最小生成树是否唯一:

1、对图中每条边,扫描其它边,如果存在相同权值的边,则标记该边。

2、用kruskal或prim求出MST。

3、如果MST中无标记的边,则MST唯一;否则,在MST中依次去掉标记的边,再求MST,若求得MST权值和原来的MST权值相同,则MST不唯一。

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int pre[109];
int first;
struct Node
{
int u,v,w;
int use;//标记最小生成树里面有没有用过这条边
int eq;//标记图中有没有与改变的权值相同的一条边
int del;//标记在求次小生成树的时候删除的那一条边
} node[10009];
bool cmp(Node a,Node b)//按照边的权值排序,权值一样的按照点的大小排序
{
if(a.w!=b.w)
return a.w<b.w;
if(a.u!=b.u)
return a.u<b.u;
return a.v<b.v;
}
int find(int x)//并查集查找父节点
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int kruskal()
{
int ans=0;//生成树的权值
int cnt=0;//生成树中的边的个数
for(int i=1;i<=n;i++)
pre[i]=i;//并查集,将每一个节点所属的集合都看作自身
for(int i=0;i<m;i++)
{
if(cnt==n-1)//已经有n-1条边了,这个生成树就已经确定下来了
break;
if(node[i].del==1)//这个是被删除掉的边
continue;
int f1=find(node[i].u);
int f2=find(node[i].v);
if(f1!=f2)//两个点所属不同的集合
{
if(first==1)//只有第一次构建最小生成树的时候才用标记
node[i].use=1;
pre[f1]=f2;//将两个点放到同一个集合中
ans+=node[i].w;//最小生成树的权值加
cnt++;//边数加
}
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&node[i].u,&node[i].v,&node[i].w);
node[i].del=node[i].eq=node[i].use=0;
}
sort(node,node+m,cmp);
for(int i=0; i<m; i++)//将有相同权值的边标记出来
{
for(int j=i+1; j<m; j++)
if(node[i].w==node[j].w)
node[i].eq=node[j].eq=1;
else break;
}
first=1;//用来标记只有第一次构建最小生成树的时候,才用标记某一条边用过
int ans=kruskal();
first=0;
int i;
for(i=0;i<m;i++)
{
if(node[i].use==1&&node[i].eq==1)//因为要判断最下生成树是否唯一,所以删除掉的那条边必须有个跟它权值一样的才有可能存在
{
node[i].del=1;//标记这条边已经被删除了
if(kruskal()==ans)
{
break;
}
node[i].del=0;//执行完之后总要把标记释放,因为每次都是在最小生成树的基础上进行删边判断的
}
}
if(i<m)
printf("Not Unique\n");
else
printf("%d\n",ans);
}
return 0;
}

当然如果要求次小生成树的话,我们就没有必要来判断是否有权值相同的边,直接将最小生成树里面的边一条一条的删除再用最下生成树之外的一条边来填补就行了。最终求出这些生成树里面的最小值。

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int pre[109];
int first;
struct Node
{
int u,v,w;
int use;//标记最小生成树里面有没有用过这条边
int del;//标记在求次小生成树的时候删除的那一条边
} node[10009];
bool cmp(Node a,Node b)//按照边的权值排序,权值一样的按照点的大小排序
{
if(a.w!=b.w)
return a.w<b.w;
if(a.u!=b.u)
return a.u<b.u;
return a.v<b.v;
}
int find(int x)//并查集查找父节点
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int kruskal()
{
int ans=0;//生成树的权值
int cnt=0;//生成树中的边的个数
for(int i=1; i<=n; i++)
pre[i]=i;//并查集,将每一个节点所属的集合都看作自身
for(int i=0; i<m; i++)
{
if(cnt==n-1)//已经有n-1条边了,这个生成树就已经确定下来了
break;
if(node[i].del==1)//这个是被删除掉的边
continue;
int f1=find(node[i].u);
int f2=find(node[i].v);
if(f1!=f2)//两个点所属不同的集合
{
if(first==1)//只有第一次构建最小生成树的时候才用标记
node[i].use=1;
pre[f1]=f2;//将两个点放到同一个集合中
ans+=node[i].w;//最小生成树的权值加
cnt++;//边数加
}
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&node[i].u,&node[i].v,&node[i].w);
node[i].del=node[i].use=0;
}
sort(node,node+m,cmp);
first=1;//用来标记只有第一次构建最小生成树的时候,才用标记某一条边用过
int ans=kruskal();
first=0;
int Ci=0x3f3f3f3f;
for(int i=0; i<m; i++)
{
if(node[i].use==1)//只要最小生成树里面有这一条边
{
node[i].del=1;//标记这条边已经被删除了
int op=kruskal();
if( op<Ci)
{
Ci=op;
}
node[i].del=0;//执行完之后总要把标记释放,因为每次都是在最小生成树的基础上进行删边判断的
}
}
printf("%d\n",Ci);
}
return 0;
}

POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)的更多相关文章

  1. POJ 1679 The Unique MST (次小生成树)

    题目链接:http://poj.org/problem?id=1679 有t组数据,给你n个点,m条边,求是否存在相同权值的最小生成树(次小生成树的权值大小等于最小生成树). 先求出最小生成树的大小, ...

  2. POJ 1679 The Unique MST (次小生成树kruskal算法)

    The Unique MST 时间限制: 10 Sec  内存限制: 128 MB提交: 25  解决: 10[提交][状态][讨论版] 题目描述 Given a connected undirect ...

  3. poj 1679 The Unique MST (次小生成树(sec_mst)【kruskal】)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 35999   Accepted: 13145 ...

  4. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

  5. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  6. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  7. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  8. POJ_1679_The Unique MST(次小生成树模板)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23942   Accepted: 8492 D ...

  9. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

随机推荐

  1. js dom学习

    创建dom元素 var oLi = document.creteElement('li'); //创建livar aLi = oUl.getElementsByTagName('li');oLi.in ...

  2. SpringBoot(七)_统一异常处理

    我感觉看了这节课,给我的思考还是很多的,感觉受益良多.废话不多说,一起学习. 统一的 外层结构返回 这样利于代码看着也规范,前端处理也统一 # 错误返回 { "code": 1, ...

  3. Java 几种调度任务的Timer、ScheduledExecutor、 开源工具包 Quartz、开源工具包 JCronTab

    关于Java中的调度问题,是比较常见的问题,一直没有系统的梳理,现在梳理一下 注意:Quartz的例子 需要在特定的版本上执行,不同的版本使用方法不同,但是总的来说方法大同小异.本例子的版本是1.8 ...

  4. UVA11248_Frequency Hopping

    给一个有向网络,求其1,n两点的最大流量是否不小于C,如果小于,是否可以通过修改一条边的容量使得最大流量不小于C? 首先对于给定的网络,我们可以先跑一遍最大流,然后先看流量是否大于C. 然后保存跑完第 ...

  5. SPOJ_LCS2

    和上个题目差不多,这次是找若干个串的LCS,若干<=10 . 做法上面也是类似的. 首先以第一个建立SAM,然后后面的串都在上面更新.每个串的更新是独立进行的,互不影响.对于同一状态,首先在同一 ...

  6. 【Java并发编程】之七:使用synchronized获取互斥锁的几点说明

    在并发编程中,多线程同时并发访问的资源叫做临界资源,当多个线程同时访问对象并要求操作相同资源时,分割了原子操作就有可能出现数据的不一致或数据不完整的情况,为避免这种情况的发生,我们会采取同步机制,以确 ...

  7. P2234 [HNOI2002]营业额统计

    题目描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是 ...

  8. Spring Boot 学习笔记1---初体验之3分钟启动你的Web应用

    前言 早在去年就简单的使用了一下Spring Boot,当时就被其便捷的功能所震惊.但是那是也没有深入的研究,随着其在业界被应用的越来越广泛,因此决定好好地深入学习一下,将自己的学习心得在此记录,本文 ...

  9. PHP-从零开始使用Solr搜索引擎服务(上)

    前言: 原文地址: http://www.cnblogs.com/JimmyBright/p/7156069.html 使用搜索引擎,我们常规的数据查询会快很多,还可以对关键词进行中文分词查询,返回一 ...

  10. 【BZOJ1499】【NOI2005】瑰丽华尔兹(动态规划)

    [BZOJ1499]瑰丽华尔兹(动态规划) 题面 BZOJ 题解 先写部分分 设\(f[t][i][j]\)表示当前在\(t\)时刻,位置在\(i,j\)时走的最多的步数 这样子每一步要么停要么走 时 ...