Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 89  Solved: 36

Description

旅行商认定如何优化旅行路线是一个非常棘手的计算问题,所以他决定沿着线性的多瑙河开展他的业务。他有一条快船能够在瞬间沿着多瑙河把他从任意开始的位置带到任意目的地,但是这条船很费油。它逆流而上(驶向源头的方向)每米花费U元,顺流而下每米花费D元(驶离源头的方向)。
沿着多瑙河有N个展销会是旅行商所感兴趣的。每个展销会只持续一天。对于任意一个展销会X,旅行商知道:①展销日期是Tx(该日期是从旅行商买船之日算起过去的天数),②展销地点是Lx(该地点用它与源头的距离表示,单位为米),③参加该展销会能赚到的钱数是Mx元。旅行商开始和结束旅程的地点都是他位于多瑙河边的家S (用它与源头的距离表示,单位为米)。
请帮助旅行商选择他是否参加,如果参加应该以什么样的顺序参加哪些展销会才能在旅行结束时获得最多的总收益。旅行商的总收益定义为他参加的所有展销会的收益和,减去他在河上顺流和逆流航行的总花费。
注意:如果展销会A在展销会B之前举行并且旅行商要参加这两个展销会,旅行商必须先参加A,之后才能参加B(即他不能先参加B后参加A)。当两个展销会在同一天举行,他可以按任意顺序参加这两个展销会。旅行商在一天之内参加的展销会的数目没有限制,但是他不能参加同一个展销会两次并在一个展销会上获得两次收益。他可以经过他已经参加过的展销会而不再获得任何收益。
任务
写一个程序,给定所有展销会的日期、地点和收益,以及旅行商的家的位置和他旅行的花费,计算他在旅行结束时可能获得的最大的总收益。
数据规模
1≤N≤500,000     展销会的数目
1≤D≤U≤10          旅行每米的花费,逆流而上(U)和顺流而下(D)
1≤S≤500,001     旅行商的家的位置
1≤Tk≤500,000       展销会k举行的日期
1≤Lk≤500,001       展销会k的地点
1≤Mk≤4,000      旅行商参加展销会k所能获得的收益

Input

你的程序需要从标准输入读人下列数据:
· 第一行依次包含整数N,U,D和S,整数之间用空格隔开。
· 接下来的N行描述了N个展销会的情况(不按特定顺序)。这N行中的第kth行描述了第kth个展销会的情况,它包含三个整数(整数之间分别用一个空格隔开)分别表示展销会的日期Tk,地点Lk,和收益Mk。
注意:输人中给出的所有地点都是不同的。即没有两个展销会在同一个地点举行,也没有展销会在旅行商的家的位置上举行。

Output

你的程序必须向标准输出写入一行,该行包含一个整数:旅行商结束旅行时能够获得的最大总收益。

Sample Input

4 5 3 100
2 80 100
20 125 130
10 75 150
5 120 110

Sample Output

50

HINT

 

Source

动态规划 线性dp 线段树优化

设 $f[i][j]$ 表示第 i 天停在j号展会位置时的最大收益。
显然有 $ f[i][j] = max{f[i-1][k] * cost(k,j)}+ w[j] $
注意到天数和展会数同级,可以认为多数展会不在同一天,这时可以把第一维i丢掉。
丢掉以后空间够了,时间复杂度还是太高啊?
我们把cost展开,当顺流而下的时候,假设向i转移的时候,j位置比k位置优,有:
$$ f[j] - (L_i-L_j) * D > f[k] - (L_i-L_k) * D $$
$$ f[j]+L_j*D > f[k] + L_k*D $$
把$ f[j]+L_j*D $ 丢进线段树里,维护区间最大值即可$O(logn)$查询。
逆流而上同理。

当一些展会挤在同一天的时候怎么处理?
撕烤一下可以发现同一天经过的展会一定是一个连续的区间(从一点到另一点的时候如果中途经过别的展会,不拿白不拿)。
对于每一个终点,分类讨论起点在上游还是下游,枚举起点找最大收益,这样显然是正确的。
维护two-pointers或者前缀最大值即可快速转移。

78行的初始化边界没有加,WA*2

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,D,U,S;
struct met{
int day,x;
int w;
bool operator < (const met &b)const{
return (day==b.day && x<b.x) || day<b.day;
}
}a[mxn];
int f[mxn];
int tmp[mxn],tmp2[mxn];
//
struct node{
int mxu,mxd;
}t[mxn<<];
#define ls rt<<1
#define rs rt<<1|1
inline void pushup(int rt){
t[rt].mxd=max(t[ls].mxd,t[rs].mxd);
t[rt].mxu=max(t[ls].mxu,t[rs].mxu);
return;
}
void Build(int l,int r,int rt){
if(l==r){t[rt].mxd=t[rt].mxu=-INF;return;}
int mid=(l+r)>>;
Build(l,mid,ls);Build(mid+,r,rs);
pushup(rt);
return;
}
void update(int p,int l,int r,int rt){
if(l==r){
t[rt].mxd=f[p]+a[p].x*D; t[rt].mxu=f[p]-a[p].x*U;
return;
}
int mid=(l+r)>>;
if(a[p].x<=mid)update(p,l,mid,ls);
else update(p,mid+,r,rs);
pushup(rt);
return;
}
//
int MXU,MXD;
void query(int L,int R,int l,int r,int rt){
if(L<=l && r<=R){
MXD=max(t[rt].mxd,MXD);MXU=max(t[rt].mxu,MXU);
return;
}
int mid=(l+r)>>;
if(L<=mid)query(L,R,l,mid,ls);
if(R>mid)query(L,R,mid+,r,rs);
return;
}
void solve(){
Build(,m,);
update(,,m,);
for(int i=,j;i<=n;i=j+){
for(j=i;a[j].day==a[i].day;j++){
f[j]=-INF;
MXU=-INF; query(a[j].x,m,,m,);
f[j]=max(f[j],MXU+a[j].x*U);
MXD=-INF; query(,a[j].x,,m,);
f[j]=max(f[j],MXD-a[j].x*D);
f[j]+=a[j].w;
}j--;
tmp[i]=f[i];tmp2[j]=f[j];
for(int k=i+;k<=j;k++)
tmp[k]=max(f[k],tmp[k-]-(a[k].x-a[k-].x)*D+a[k].w);
for(int k=j-;k>=i;k--)
tmp2[k]=max(f[k],tmp2[k+]-(a[k+].x-a[k].x)*U+a[k].w);
for(int k=i;k<=j;k++){
f[k]=max(f[k],max(tmp[k],tmp2[k]));
update(k,,m,);
}
}
printf("%d\n",f[n]);
return;
}
int main(){
int i,j;
n=read();
U=read();D=read();
S=read();
a[]=(met){,S,};n++;
for(i=;i<=n;i++){
a[i].day=read();a[i].x=read();a[i].w=read();
m=max(m,a[i].x);
}
sort(a+,a+n+);++n;
a[n]=(met){a[n-].day+,S,};
m=max(m,S);
solve();
return ;
}

Bzoj3352 [ioi2009]旅行商的更多相关文章

  1. 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法

    若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...

  2. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  3. 2016全国研究生数学建模A题多无人机协同任务规划——基于分布式协同多旅行商MTSP遗传算法

    MTSP问题是指:有Ⅳ个城市,要求旅行商到达每个城市各一次,且仅一次,并[旦 1到起点,且要求旅行路线最短.而多旅行商问题M个旅行商从同一个城市(或多个城市)出发.分羽走一条旅路线,且总路程缀短.有关 ...

  4. [vijos P1014] 旅行商简化版

    昨天早上上课讲旅行商问题,有点难,这周抽空把3^n的算法码码看.不过这个简化版已经够折腾人了. 其一不看解析不知道这是双进程动态规划,不过我看的解析停留在f[i,j]表示第一个人走到i.第二个人走到j ...

  5. vijosP1014 旅行商简化版

    vijosP1014 旅行商简化版 链接:https://vijos.org/p/1014 [思路] 双线DP. 设ab,ab同时走.用d[i][j]表示ab所处结点i.j,且定义i>j,则有转 ...

  6. 洛谷【P1523】旅行商的背包(算法导论 15-1) 题解

    P1523 旅行商简化版 题目背景 欧几里德旅行商\((Euclidean Traveling Salesman)\)问题也就是货郎担问题一直是困扰全世界数学家.计算机学家的著名问题.现有的算法都没有 ...

  7. hdu 4281 Judges' response(多旅行商&DP)

    Judges' response Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. 旅行商(sale)

    旅行商(sale) 题目描述 camp国有n座城市,由1,2,-,n编号.城市由n–1条双向道路相连.任意两个城市之间存在唯一的道路连通.有m个旅行商,第i个旅行商会从城市ai旅行到城市bi,贩卖ci ...

  9. 洛谷P1523 旅行商简化版(DP)

    题目: P1523 旅行商简化版 解析 可以看做是两个人同时从西往东走,经过不一样的点,走到最东头的方案数 设\(f[i][j]\)表示一个人走到i,一个人走到j的最短距离(\(i<j\)) 第 ...

随机推荐

  1. PAT 甲级 1141 PAT Ranking of Institutions

    https://pintia.cn/problem-sets/994805342720868352/problems/994805344222429184 After each PAT, the PA ...

  2. dividend = Integer.parseInt(args[0])参数问题

    先来一段代码: package yichang; public class MyExceptionTest { public static void main(String[] args) { int ...

  3. DBGridEH序号的自动生成

    序号的自动生成1.定义变量  private         maxno:integer;  public        bmodified:boolean;2.写函数  function max(c ...

  4. Augmenting DOM Storage with IE's userData behavior

    http://www.javascriptkit.com/javatutors/domstorage2.shtml Augmenting DOM Storage with IE's userData ...

  5. python3+selenium 牛刀小试

    # coding:utf-8 # __author__ = 'Carry' import unittest from selenium import webdriver import time cla ...

  6. python的N个小功能(找到要爬取的验证码链接,并大量下载验证码样本)

    # -*- coding: utf-8 -*- """ Created on Mon Mar 21 11:04:54 2017 @author: sl "&qu ...

  7. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  8. Candies CodeForces - 991C(二分水题)

    就是二分暴力就好了 为什么要记下来 呵呵....emm你说为什么... 行吧 好吧 我一直以为我的二分出问题了 原来不是 依旧很帅 统计的时候求的减了多少次  然后用次数乘了mid 这样做会使那个人获 ...

  9. Android Studio自动生成UML关系类图

    android studio 根据源码自动生成UML的插件介绍http://www.jianshu.com/p/cbccd831cf01 simpleumlhttps://plugins.jetbra ...

  10. 【bzoj4337】【Bjoi2015】树的同构

    题解 无标号树的HASH: 找到树的重心,以重心为根求出括号序列: 由于树的重心最多只有两个,取字典序的最小括号序列HASH即可 树的括号序列$s_{u}="(s_{v_{1}},s_{v_ ...