激活函数(relu,prelu,elu,+BN)对比on cifar10


Lrelu实现:
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak * x) Prelu实现:
def parametric_relu(_x):
alphas = tf.get_variable('alpha', _x.get_shape()[-1],
initializer=tf.constant_initializer(0.25),
dtype = tf.float32
)
pos = tf.nn.relu(_x)
neg = alphas * (_x - abs(_x)) * 0.5
print(alphas)
return pos + neg BN实现:
def batch_norm(x, n_out,scope='bn'):
"""
Batch normalization on convolutional maps.
Args:
x: Tensor, 4D BHWD input maps
n_out: integer, depth of input maps
phase_train: boolean tf.Variable, true indicates training phase
scope: string, variable scope Return:
normed: batch-normalized maps
"""
with tf.variable_scope(scope):
beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
name='gamma', trainable=True)
tf.add_to_collection('biases', beta)
tf.add_to_collection('weights', gamma) batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.99) def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
#mean, var = control_flow_ops.cond(phase_train,
# mean, var = control_flow_ops.cond(phase_train,
# mean_var_with_update,
# lambda: (ema.average(batch_mean), ema.average(batch_var)))
mean, var = mean_var_with_update()
normed = tf.nn.batch_normalization(x, mean, var,
beta, gamma, 1e-3)
return normed




解压:tar -zxvf xxx.tar.gz
cifar-100-python/
cifar-100-python/file.txt~
cifar-100-python/train
cifar-100-python/test
cifar-100-python/meta
def unpickle(file):
import cPickle
fo = open(file, ‘rb’)
dict = cPickle.load(fo)
fo.close()
return dict
label_bytes =2 # 2 for CIFAR-100
#取第二个标签100维
result.label = tf.cast(
tf.strided_slice(record_bytes, [1], [label_bytes]), tf.int32)

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
激活函数(relu,prelu,elu,+BN)对比on cifar10的更多相关文章
- 激活函数ReLU、Leaky ReLU、PReLU和RReLU
“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”. sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”.使用“非饱和激活函数”的优势在于两点: 1 ...
- [转]激活函数ReLU、Leaky ReLU、PReLU和RReLU
“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”. sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”.使用“非饱和激活函数”的优势在于两点: 1 ...
- 激活函数(ReLU, Swish, Maxout)
神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[ \begin{equation} f(x)= \b ...
- 【机器学习】激活函数(ReLU, Swish, Maxout)
https://blog.csdn.net/ChenVast/article/details/81382939 神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectifie ...
- ReLU 和sigmoid 函数对比
详细对比请查看:http://www.zhihu.com/question/29021768/answer/43517930 . 激活函数的作用: 是为了增加神经网络模型的非线性.否则你想想,没有激活 ...
- ReLU 和sigmoid 函数对比以及droupout
参考知乎的讨论:https://www.zhihu.com/question/29021768 1.计算简单,反向传播时涉及除法,sigmod求导要比Relu复杂: 2.对于深层网络,sigmod反向 ...
- caffe Python API 之激活函数ReLU
import sys import os sys.path.append("/projects/caffe-ssd/python") import caffe net = caff ...
- Difference between ReLU、LReLU、PReLU、CReLU、ELU、SELU
激活函数 ReLU.LReLU.PReLU.CReLU.ELU.SELU 的定义和区别 ReLU tensorflow中:tf.nn.relu(features, name=None) LReLU ...
- 神经网络中的激活函数具体是什么?为什么ReLu要好过于tanh和sigmoid function?(转)
为什么引入激活函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层 ...
随机推荐
- (转)MySQL备份原理详解
MySQL备份原理详解 原文:http://www.cnblogs.com/cchust/p/5452557.html 备份是数据安全的最后一道防线,对于任何数据丢失的场景,备份虽然不一定能恢复百分之 ...
- C++的开源跨平台日志库glog学习研究(二)--宏的使用
上一篇从整个工程上简单分析了glog,请看C++的开源跨平台日志库glog学习研究(一),这一篇对glog的实现代码入手,比如在其源码中以宏的使用最为广泛,接下来就先对各种宏的使用做一简单分析. 1. ...
- Java之集合(二十七)其它集合
转载请注明源出处:http://www.cnblogs.com/lighten/p/7551368.html 1.前言 本章介绍剩余的3个集合类:ConcurrentSkipListSet.CopyO ...
- 搭建互联网架构学习--005--框架初步拆分ssm单一框架
经过前边的准备步骤,服务器基本搭建完毕,接下来就开始一步步搭建框架了. 拆分单一结构:拆分的目的是为下一步引入dubbo做准备的. 把下边这个单一maven框架进行拆分 这个就是一个简单的maven项 ...
- ASP.NET5使用FaceBook登录
原版教程 使用VS2015创建Web应用: 此教程使用的是FaceBook账号登录,需要添加相关的类,打开Nuget: 搜索Microsoft.AspNet.Authentication.Facebo ...
- Java虚拟机(四):JVM类加载机制
1.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构 ...
- redis 安装 与错误解决办法
redis 安装与安装中遇到的错误 redis 安装 wget http://download.redis.io/releases/redis-4.0.11.tar.gz .tar.gz cd red ...
- 多表连接的三种方式详解 HASH JOIN MERGE JOIN NESTED LOOP
在多表联合查询的时候,如果我们查看它的执行计划,就会发现里面有多表之间的连接方式. 之前打算在sqlplus中用执行计划的,但是格式看起来有点乱,就用Toad 做了3个截图. 从3张图里我们看到了几点 ...
- thinkphp 页面静态化
页面静态化(代码在最后) 静态页面 是网页的代码都在页面中,不需要执行asp,php,jsp,.net等程序生成客户端网页代码的网页,静态页面网址中一般不含“?”.“=”.“&”等特殊符号. ...
- jar命令简单使用
以windows10操作系统,JDK1.8为例: 打包主要是针对class文件以及依赖的jar包. 1.编写MANIFEST.MF文件(详细可以上网查一下MANIFEST.MF文件规则.) 此文件主要 ...