POJ 2773 Happy 2006------欧几里得 or 欧拉函数。
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 8359 | Accepted: 2737 |
Description
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Input
Output
Sample Input
2006 1
2006 2
2006 3
Sample Output
1
3
5
Source
/*
题意:求第几个与N互素的数字。
周期性问题。
举例。
5的互素有:1.2,3,4
很明显:
第一个互素是1
第二个是 2
......
第五个是 6=5+1;
第六个是 8=6+2;
这里就存在着周期T.
1.需要注意对%==0 的时候的讨论。
2.M的值可以为1.要特判。否则对后面的/法,有影响,会RE的。
3.基本的思路也很简单,求出N的欧拉值,那么T就求出来了,然后
求出它的素数因子,扫一遍,找到余数的那个互素数。
*/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; int opl[];
int s[];
int prime[],len;
int f[],flen; void make_prime()//素数打表
{
int i,j;
len=;
for(i=;i<=;i++)
if(s[i]==false)
{
prime[++len]=i;
for(j=i*;j<=;j=j+i)
s[j]=true;
}
} void make_Euler()//欧拉函数[1,1000000]全部打表。
{
int i,j;
make_prime();
for(i=;i<=;i++)
opl[i]=i;
opl[]=;
for(i=;i<=len;i++)
for(j=prime[i];j<=;j=j+prime[i])
opl[j]=opl[j]/prime[i]*(prime[i]-);
} void make_dEuler(int n)//素因子装在f[]
{
int i;
flen=;
for(i=;i*i<=n;i++)
if(n%i==)
{
while(n%i==)
n=n/i;
f[++flen]=i;
}
if(n!=)
f[++flen]=n;
} int make_ini(int n,int k1)
{
int i,j;
int num=;
make_dEuler(n);
memset(s,false,sizeof(s));
for(i=;i<=flen;i++)
for(j=f[i];j<=n;j=j+f[i])
s[j]=true;
for(i=;i<=n;i++)
if(s[i]==false)
{
num++;
if(num==k1)
return i;
}
} int main()
{
int n,m,sum,k,k1,T;
make_Euler();
while(scanf("%d%d",&n,&m)>)
{
if(n==)//特判
{
printf("%d\n",m);
continue;
}
sum=;
T=opl[n];
if(m%T==)//!!~
{
sum=sum+n*((m-)/T);
sum=sum+make_ini(n,T);
}
else
{
sum=sum+n*(m/T);
sum=sum+make_ini(n,m%T);
}
printf("%d\n",sum);
}
return ;
}
POJ 2773 Happy 2006------欧几里得 or 欧拉函数。的更多相关文章
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- POJ 2773 Happy 2006#素数筛选+容斥原理+二分
http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...
- POJ 2773 Happy 2006(欧几里德算法)
题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...
- poj 2773 Happy 2006 - 二分答案 - 容斥原理
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11161 Accepted: 3893 Description Two ...
- POJ 2773 Happy 2006 数学题
题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...
- [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)
题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...
- POJ 2773 Happy 2006(容斥原理+二分)
Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10827 Accepted: 3764 Descr ...
- poj 2773 Happy 2006
// 题意 :给你两个数 m(10^6),k(10^8) 求第k个和m互质的数是什么这题主要需要知道这样的结论gcd(x,n)=1 <==> gcd(x+n,n)=1证明 假设 gcd(x ...
- poj 2773 Happy 2006 容斥原理+二分
题目链接 容斥原理求第k个与n互质的数. #include <iostream> #include <vector> #include <cstdio> #incl ...
- 欧几里得&扩展欧几里得
原博网址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数 ...
随机推荐
- C++命令行画心形<转载>
#include <stdio.h> int main() { for (float y = 1.5f; y > -1.5f; y -= 0.1f) { for (float x = ...
- matplotlib实现三维柱状图
matplotlib实现三维柱状图 import cv2 img = cv2.imread("1.png", 0) #特征点在图片中的坐标位置 m = 448 n = 392 im ...
- 《JAVA与模式》之代理模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述代理(Proxy)模式的: 代理模式是对象的结构模式.代理模式给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用. 代理模式的结 ...
- Postman+Newman+Jenkins 详细教程
详细步骤点击: https://note.youdao.com/web/#/file/WEBda9492a77807d8050b40f8315bf6554a/note/WEBde553e6dff6ff ...
- 用汇编语言(ARM 32位)编写TCP Bind Shell的菜鸟教程
用汇编语言(ARM 32位)编写TCP Bind Shell的菜鸟教程 来源 https://www.4hou.com/info/news/9959.html Change 新闻 2018年1月19日 ...
- 【DB2】How to resolve SQL20249N the statement was not processed with error
相关链接 https://vinaysdb2blog.blogspot.com/2017/11/how-to-resolve-sql20249n-statement-was-not-processed ...
- linux传输文件命令: rz 和 sz
参考: https://www.cnblogs.com/xiluhua/p/6218563.html https://blog.csdn.net/u014242496/article/details/ ...
- Vue.js系列之二Vue实例
每个Vue应用都是通过Vue函数创建一个新的Vue实例开始,代码如下: var vm=new Vue({}); {}是创建Vue应用时的参数对象 1.Vue实例的data属性 当一个Vue对象被创建时 ...
- postman—数据同步和创建测试集
postman使用之二:数据同步和创建测试集 一.数据同步 启动postman 后在右上角可以登录账号,登录后就可以同步自己的api测试脚本,连上网在办公区在家都可以同步. 二.创建测试集 1.点击c ...
- Map map=new HashMap()
Map是接口,hashMap是Map的一种实现.接口不能被实例化.Map map=new HashMap(); 就是将map实例化成一个hashMap.这样做的好处是调用者不需要知道map具体的实现, ...