Henon吸引子是混沌与分形的著名例子.

相关软件:混沌数学及其软件模拟
相关代码:

// http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view
class HenonAttractor : public DifferentialEquation
{
public:
HenonAttractor()
{
m_StartX = 0.01f;
m_StartY = 0.01f;
m_StartZ = 0.0f; //m_ParamA = 1.28f;
//m_ParamB = 0.3f; m_ParamA = 1.28f;
m_ParamB = -0.985f; m_StepT = 0.01f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
//dX = (1 - m_ParamA*x*x + y - x)/m_StepT;
//dY = (m_ParamB*x - y)/m_StepT;
//dZ = 0.0f; dX = ( - m_ParamA*x*x + m_ParamB*y /*- x*/)/m_StepT;
dY = (x - y)/m_StepT;
dZ = 0.0f;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
};

相关截图:

混沌数学之Henon吸引子的更多相关文章

  1. 混沌数学之Henon模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view ...

  2. 混沌数学之离散点集图形DEMO

    最近看了很多与混沌相关的知识,并写了若干小软件.混沌现象是个有意思的东西,同时混沌也能够生成许多有意思的图形.混沌学的现代研究使人们渐渐明白,十分简单的数学方程完全可以模拟系统如瀑布一样剧烈的行为.输 ...

  3. 混沌数学之Lorenz(洛伦茨)吸引子

    洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名. 洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称. ...

  4. 混沌数学之Rössler(若斯叻)吸引子

    若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...

  5. 混沌数学之Chua's circuit(蔡氏电路)

    蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...

  6. 混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)

    拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是 1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介 质自激波动的非线性常微分方程组: dot{x ...

  7. 混沌数学之Duffing(杜芬)振子

    杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示 杜芬方程列式如下: 其中 γ控制阻尼度 α控制韧度 β控制动力的非线性度 δ驱动力的振幅 ω驱动力的圆频 ...

  8. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  9. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

随机推荐

  1. poj2524 Ubiquitous Religions(并查集)

    题目链接 http://poj.org/problem?id=2524 题意 有n个学生,编号1~n,每个学生最多有1个宗教信仰,输入m组数据,每组数据包含a.b,表示同学a和同学b有相同的信仰,求在 ...

  2. VS15 openGL 编程指南 配置库 triangle例子

    最近去图书馆借了一本书<OpenGL编程指南(原书第八版)>,今天倒腾了一天才把第一个例子运行出来. 所以,给大家分享一下,希望能快速解决配置问题. 一.下载需要的库文件 首先,我们需要去 ...

  3. 【线段树】【扫描线】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem A. Donut

    题意:平面上n个点,每个点带有一个或正或负的权值,让你在平面上放一个内边长为2l,外边长为2r的正方形框,问你最大能圈出来的权值和是多少? 容易推出,能框到每个点的 框中心 的范围也是一个以该点为中心 ...

  4. C/C++ 之输入输出

    因为C++向下兼容C,所以有多种输入输出的方式,cin/cout十分简洁,但个人觉得不如scanf/printf来的强大,而且在做算法题时,后者运行速度也快些. scanf/printf #inclu ...

  5. Jmeter学习之— 参数化、关联、断言、数据库的操作

    一. Jmeter参数化1. 文件参数化解释:创建测试数据,将数据写入TXT文件文件中,然后Jmeter从文件中读取数据.例如用户注册操作:1. 首先在Jmeter下创建一个线程组,如下图: 2. 然 ...

  6. git服务端和客户端百度网盘下载地址

    https://pan.baidu.com/s/1BKw-bgYOrQjLkwUMzyH7KQ

  7. .NET程序员提高效率的70多个开发工具

    工欲善其事,必先利其器,没有好的工具,怎么能高效的开发出高质量的代码呢?本文为各ASP.NET 开发者介绍一些高效实用的工具,涉及SQL 管理,VS插件,内存管理,诊断工具等,涉及开发过程的各个环节, ...

  8. Windows 7安装超级终端连接COM口设备

    Windows 7已经没有超级终端,只能用投机取巧的方式实现. 1.先配置电话 随便填写信息,然后点击确定即可. 2.下载这个终端运行,注意:要以管理员身份运行. 链接: https://pan.ba ...

  9. 【我所认知的BIOS】—&gt; uEFI AHCI Driver(5) — 第一个protocol最终要開始安装了

    [我所认知的BIOS]-> uEFI AHCI Driver(5) - 第一个protocol最终要開始安装了 LightSeed 4/28/2014 文章对EFI_DRIVER_BINDING ...

  10. TLC2262和TLC2264 轨对轨运算放大器

    TLC2262和TLC2264分别是TI公司双路和四路运算放大器,两种器件可以在单电源或双电源条件下供电,从而增强了动态的范围,可以达到轨对轨输出的性能.TLC226X系列与TLC225X的微功耗和T ...