B. Mike and Shortcuts
time limit per test:

3 seconds

memory limit per test:

256 megabytes

input:

standard input

output:

standard output

Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.

City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to  units of energy.

Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.

Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.

Input

The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.

The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).

Output

In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.

Examples
input
3
2 2 3
output
0 1 2 
input
5
1 2 3 4 5
output
0 1 2 3 4 
input
7
4 4 4 4 7 7 7
output
0 1 2 1 2 3 3 
Note

In the first sample case desired sequences are:

1: 1; m1 = 0;

2: 1, 2; m2 = 1;

3: 1, 3; m3 = |3 - 1| = 2.

In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.

In the third sample case — consider the following intersection sequences:

1: 1; m1 = 0;

2: 1, 2; m2 = |2 - 1| = 1;

3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;

4: 1, 4; m4 = 1;

5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;

6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;

7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.

题目链接:http://codeforces.com/contest/689/problem/B


题意:任意两点的距离为两点序号差的绝对值,有一些特殊的点,i到ai的距离为1.求1到每个点的最短距离。

思路:SPFA模板题。任意两个编号相邻的点的距离为1构造双向边,再加上n个特殊点构成的边。因为n最大为200000,套用SPFA模板。

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
struct node
{
int to,d;
} edge[*MAXN];
int head[MAXN],nextt[*MAXN];
int sign[MAXN];
queue<int>Q;
int dist[MAXN];
int n;
void add(int i,int u,int v,int d)
{
edge[i].to=v;
edge[i].d=d;
nextt[i]=head[u];
head[u]=i;
}
void SPFA(int v)
{
int i,u;
for(i=; i<=n; i++)
{
dist[i]=inf;
sign[i]=;
}
dist[v]=;
Q.push(v);
sign[v]=;
while(!Q.empty())
{
u=Q.front();
Q.pop();
sign[u]=;
i=head[u];
while(i!=)
{
if(dist[edge[i].to]>dist[u]+edge[i].d)
{
dist[edge[i].to]=dist[u]+edge[i].d;
if(!sign[edge[i].to])
{
Q.push(edge[i].to);
sign[edge[i].to]=;
}
}
i=nextt[i];
}
}
}
int a[];
int main()
{
int i,j;
scanf("%d",&n);
memset(head,,sizeof(head));
j=;
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
if(i!=a[i]) add(j++,i,a[i],);
if(i>)
{
add(j++,i-,i,);
add(j++,i,i-,);
}
}
SPFA();
for(i=; i<=n; i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}

SPFA

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
vector<int>V[];
int dist[];
void DFS(int u)
{
int i;
for(i=; i<V[u].size(); i++)
{
if(dist[V[u][i]]>dist[u]+)
{
dist[V[u][i]]=dist[u]+;
DFS(V[u][i]);
}
}
}
int main()
{
int i,n,a;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a);
V[i].push_back(a);
if(i+<=n) V[i].push_back(i+);
if(i->=) V[i].push_back(i-);
}
for(i=; i<=n; i++) dist[i]=inf;
dist[]=;
DFS();
for(i=;i<=n;i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}

DFS

Codeforces 689B. Mike and Shortcuts SPFA/搜索的更多相关文章

  1. CodeForces 689B Mike and Shortcuts (bfs or 最短路)

    Mike and Shortcuts 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/F Description Recently ...

  2. CodeForces 689B Mike and Shortcuts (BFS or 最短路)

    题目链接:http://codeforces.com/problemset/problem/689/B 题目大意: 留坑 明天中秋~

  3. codeforces 689B Mike and Shortcuts 最短路

    题目大意:给出n个点,两点间的常规路为双向路,路长为两点之间的差的绝对值,第二行为捷径,捷径为单向路(第i个点到ai点),距离为1.问1到各个点之间的最短距离. 题目思路:SPFA求最短路 #incl ...

  4. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

  5. codeforces 689B B. Mike and Shortcuts(bfs)

    题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...

  6. Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)

    B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  7. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  8. hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)

    hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...

  9. codeforces 547E Mike and Friends

    codeforces 547E Mike and Friends 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define ...

随机推荐

  1. Windows10环境下loadrunner11 安装

    loadrunner11安装包下载:链接:https://pan.baidu.com/s/12AVNtopwuA-UDsoxbbLgoQ 密码:deaf 链接:https://pan.baidu.co ...

  2. tomcat启动原理

    2018年04月12日 19:55:22 太极小帅帅 阅读数:282   前言 一直在用Tomcat,但是对其启动原理一直没去研究,这里准备去面试,可能会问道.于是总结了下启动原理.完全凭感觉去揣测, ...

  3. c++官方文档

    来自官方文档...感谢老王指出需要c++11,一下代码全在c++11下编译,编译参数加入  -std=c++11 #include<stdio.h> #include<iostrea ...

  4. FlexPaper及二次开发

    Flexpaper二次开发入门教程 http://ajava.org/course/web/?page=2

  5. Can not find the tag library descriptor for "http://java.sun.com/jsp/jstl/co

    转自:https://www.xuebuyuan.com/934357.html 需要引入standard.jar和jstl.jar 正确添加即可

  6. event 实现两个程序的交互

    event.wait() 等待一定时间,或者当遇到event.set() 时,继续执行 event.clear() 清除信号 event.set() 设置信号 event.isset() 判断信号 例 ...

  7. 查看RPM包里的内容

    有时候,拿到一个RPM,并不想安装它,而想了解包里的内容,怎么办呢? 如果只相知道包里的文件列表执行: #rpm -qpl packetname 如果想要导出包里的内容,而不是安装,那么执行: # r ...

  8. Session的作用和使用场景

    1.session何时被创建? 客户首次访问服务器时,回话session对象被创建并分配一个唯一的Id,同时id号发送到客户端,并存入cookie,使得客户端session对象和服务器端一致. 2.如 ...

  9. 在Eclipes中查看源代码和大纲快速定位

    1 在Eclipes中查看源代码,快捷键使用clrl+光标,选择你要查看的方法和属性查看源代码.例如你想看StringBuilder这个类源代码 StringBuilder allow = new S ...

  10. Servlet Response 重定向

    重定向 response.sendRedirect("index.jsp");       //登录用户名不存在,重定向到index.jsp 1重定向在客户端发挥作用,通过浏览器重 ...