Codeforces 689B. Mike and Shortcuts SPFA/搜索
3 seconds
256 megabytes
standard input
standard output
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.
The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.
The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).
In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.
- 3
2 2 3
- 0 1 2
- 5
1 2 3 4 5
- 0 1 2 3 4
- 7
4 4 4 4 7 7 7
- 0 1 2 1 2 3 3
In the first sample case desired sequences are:
1: 1; m1 = 0;
2: 1, 2; m2 = 1;
3: 1, 3; m3 = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.
In the third sample case — consider the following intersection sequences:
1: 1; m1 = 0;
2: 1, 2; m2 = |2 - 1| = 1;
3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;
4: 1, 4; m4 = 1;
5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;
6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.
题目链接:http://codeforces.com/contest/689/problem/B
题意:任意两点的距离为两点序号差的绝对值,有一些特殊的点,i到ai的距离为1.求1到每个点的最短距离。
思路:SPFA模板题。任意两个编号相邻的点的距离为1构造双向边,再加上n个特殊点构成的边。因为n最大为200000,套用SPFA模板。
代码:
- #include<bits/stdc++.h>
- using namespace std;
- const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
- struct node
- {
- int to,d;
- } edge[*MAXN];
- int head[MAXN],nextt[*MAXN];
- int sign[MAXN];
- queue<int>Q;
- int dist[MAXN];
- int n;
- void add(int i,int u,int v,int d)
- {
- edge[i].to=v;
- edge[i].d=d;
- nextt[i]=head[u];
- head[u]=i;
- }
- void SPFA(int v)
- {
- int i,u;
- for(i=; i<=n; i++)
- {
- dist[i]=inf;
- sign[i]=;
- }
- dist[v]=;
- Q.push(v);
- sign[v]=;
- while(!Q.empty())
- {
- u=Q.front();
- Q.pop();
- sign[u]=;
- i=head[u];
- while(i!=)
- {
- if(dist[edge[i].to]>dist[u]+edge[i].d)
- {
- dist[edge[i].to]=dist[u]+edge[i].d;
- if(!sign[edge[i].to])
- {
- Q.push(edge[i].to);
- sign[edge[i].to]=;
- }
- }
- i=nextt[i];
- }
- }
- }
- int a[];
- int main()
- {
- int i,j;
- scanf("%d",&n);
- memset(head,,sizeof(head));
- j=;
- for(i=; i<=n; i++)
- {
- scanf("%d",&a[i]);
- if(i!=a[i]) add(j++,i,a[i],);
- if(i>)
- {
- add(j++,i-,i,);
- add(j++,i,i-,);
- }
- }
- SPFA();
- for(i=; i<=n; i++)
- cout<<dist[i]<<" ";
- cout<<endl;
- return ;
- }
SPFA
- #include<bits/stdc++.h>
- using namespace std;
- const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
- vector<int>V[];
- int dist[];
- void DFS(int u)
- {
- int i;
- for(i=; i<V[u].size(); i++)
- {
- if(dist[V[u][i]]>dist[u]+)
- {
- dist[V[u][i]]=dist[u]+;
- DFS(V[u][i]);
- }
- }
- }
- int main()
- {
- int i,n,a;
- scanf("%d",&n);
- for(i=; i<=n; i++)
- {
- scanf("%d",&a);
- V[i].push_back(a);
- if(i+<=n) V[i].push_back(i+);
- if(i->=) V[i].push_back(i-);
- }
- for(i=; i<=n; i++) dist[i]=inf;
- dist[]=;
- DFS();
- for(i=;i<=n;i++)
- cout<<dist[i]<<" ";
- cout<<endl;
- return ;
- }
DFS
Codeforces 689B. Mike and Shortcuts SPFA/搜索的更多相关文章
- CodeForces 689B Mike and Shortcuts (bfs or 最短路)
Mike and Shortcuts 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/F Description Recently ...
- CodeForces 689B Mike and Shortcuts (BFS or 最短路)
题目链接:http://codeforces.com/problemset/problem/689/B 题目大意: 留坑 明天中秋~
- codeforces 689B Mike and Shortcuts 最短路
题目大意:给出n个点,两点间的常规路为双向路,路长为两点之间的差的绝对值,第二行为捷径,捷径为单向路(第i个点到ai点),距离为1.问1到各个点之间的最短距离. 题目思路:SPFA求最短路 #incl ...
- codeforces 689 Mike and Shortcuts(最短路)
codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...
- codeforces 689B B. Mike and Shortcuts(bfs)
题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)
hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...
- codeforces 547E Mike and Friends
codeforces 547E Mike and Friends 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define ...
随机推荐
- hive数据导入导出和常用操作
导出到本地文件 insert overwrite local directory '/home/hadoop'select * from test1; 导出到hdfs insert overwrite ...
- 转化Excel表格为php配置文件
<?php //建立reader对象 ,分别用两个不同的类对象读取2007和2003版本的excel文件 require("PHPExcel/Reader/Excel20 ...
- js基础和运算符
1.什么JavaScript? 运行环境 : 浏览器 是一种具有安全性的客户端的脚本语言 用来实现与web页面交互 脚本语言:语言嵌入到htm ...
- Flask上下文管理源码分析
上下文管理本质(类似于threading.local): 1.每一个线程都会在Local类中创建一条数据: { "唯一标识":{stark:[ctx,]}, "唯一标识& ...
- java内存模型(一)正确使用 Volatile 变量
文章转载自: 正确使用 Volatile 变量 Java 语言中的 volatile 变量可以被看作是一种 "程度较轻的 synchronized":与 synchronize ...
- 关于QT内部16进制、十进制、QByteArray,QString
QT里面的数据转化成十六进制比较麻烦,其他的int或者byte等型都有专门的函数,而十六进制没有特定的函数去转化,这我在具体的项目中已经解决(参考网上大神)->小项目程序 QT里面虽然有什么QS ...
- 2. java获取下周日-下周六的时间
String[] arrDate = new String[7]; String[] arrWeek = new String[7]; int mondayPlus = 0; Calendar cd ...
- springMVC之Interceptor拦截器
转自:https://blog.csdn.net/qq_25673113/article/details/79153547 Interceptor拦截器用于拦截Controller层接口,表现形式有点 ...
- VBA 语句集400句
定制模块行为(1) Option Explicit '强制对模块内所有变量进行声明 Option Private Module '标记模块为私有,仅对同一工程中其它模块有用,在宏对话框中不显示 ...
- block元素和inline元素的特点
一.block元素的特点 1.处于常规流中时,如果width没有设置,会自动填充满父容器 2.可以设置height/width及margin/padding 3.处于常规流中时,布局在前后元素位置之间 ...