Codeforces 689B. Mike and Shortcuts SPFA/搜索
3 seconds
256 megabytes
standard input
standard output
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.
The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.
The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).
In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.
3
2 2 3
0 1 2
5
1 2 3 4 5
0 1 2 3 4
7
4 4 4 4 7 7 7
0 1 2 1 2 3 3
In the first sample case desired sequences are:
1: 1; m1 = 0;
2: 1, 2; m2 = 1;
3: 1, 3; m3 = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.
In the third sample case — consider the following intersection sequences:
1: 1; m1 = 0;
2: 1, 2; m2 = |2 - 1| = 1;
3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;
4: 1, 4; m4 = 1;
5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;
6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.
题目链接:http://codeforces.com/contest/689/problem/B
题意:任意两点的距离为两点序号差的绝对值,有一些特殊的点,i到ai的距离为1.求1到每个点的最短距离。
思路:SPFA模板题。任意两个编号相邻的点的距离为1构造双向边,再加上n个特殊点构成的边。因为n最大为200000,套用SPFA模板。
代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
struct node
{
int to,d;
} edge[*MAXN];
int head[MAXN],nextt[*MAXN];
int sign[MAXN];
queue<int>Q;
int dist[MAXN];
int n;
void add(int i,int u,int v,int d)
{
edge[i].to=v;
edge[i].d=d;
nextt[i]=head[u];
head[u]=i;
}
void SPFA(int v)
{
int i,u;
for(i=; i<=n; i++)
{
dist[i]=inf;
sign[i]=;
}
dist[v]=;
Q.push(v);
sign[v]=;
while(!Q.empty())
{
u=Q.front();
Q.pop();
sign[u]=;
i=head[u];
while(i!=)
{
if(dist[edge[i].to]>dist[u]+edge[i].d)
{
dist[edge[i].to]=dist[u]+edge[i].d;
if(!sign[edge[i].to])
{
Q.push(edge[i].to);
sign[edge[i].to]=;
}
}
i=nextt[i];
}
}
}
int a[];
int main()
{
int i,j;
scanf("%d",&n);
memset(head,,sizeof(head));
j=;
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
if(i!=a[i]) add(j++,i,a[i],);
if(i>)
{
add(j++,i-,i,);
add(j++,i,i-,);
}
}
SPFA();
for(i=; i<=n; i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}
SPFA
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
vector<int>V[];
int dist[];
void DFS(int u)
{
int i;
for(i=; i<V[u].size(); i++)
{
if(dist[V[u][i]]>dist[u]+)
{
dist[V[u][i]]=dist[u]+;
DFS(V[u][i]);
}
}
}
int main()
{
int i,n,a;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a);
V[i].push_back(a);
if(i+<=n) V[i].push_back(i+);
if(i->=) V[i].push_back(i-);
}
for(i=; i<=n; i++) dist[i]=inf;
dist[]=;
DFS();
for(i=;i<=n;i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}
DFS
Codeforces 689B. Mike and Shortcuts SPFA/搜索的更多相关文章
- CodeForces 689B Mike and Shortcuts (bfs or 最短路)
Mike and Shortcuts 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/F Description Recently ...
- CodeForces 689B Mike and Shortcuts (BFS or 最短路)
题目链接:http://codeforces.com/problemset/problem/689/B 题目大意: 留坑 明天中秋~
- codeforces 689B Mike and Shortcuts 最短路
题目大意:给出n个点,两点间的常规路为双向路,路长为两点之间的差的绝对值,第二行为捷径,捷径为单向路(第i个点到ai点),距离为1.问1到各个点之间的最短距离. 题目思路:SPFA求最短路 #incl ...
- codeforces 689 Mike and Shortcuts(最短路)
codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...
- codeforces 689B B. Mike and Shortcuts(bfs)
题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)
hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...
- codeforces 547E Mike and Friends
codeforces 547E Mike and Friends 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define ...
随机推荐
- 《opencv学习》 之 几何变换
图像平移: 1.不改变图像大小 2.改变图像大小 编程按照目标图像的角度去编写 不改变大小的平移 1 void imageTranslation1(Mat& src, Mat& dst ...
- 8. myeclipse10 svn插件安装
1.在myeclipse安装目录下找到dropins文件夹,并在下面创建svn文件夹 2. 解压site-1.8.22.zip 3. 4. 5. 6.
- 5.log4j报错
java.lang.UnsupportedClassVersionError: org/apache/log4j/Logger : Unsupported major.minor version 51 ...
- 某C电面记
昨天突然接到某C的电话面试,有点措不及防.15分钟左右的电面后,直接收到了不合适的邮件通知,那个惨~~~~~~~~~~~~~~~ 记录回答得不是很好的几个问题: 1.自动化层面,你做了什么工作,给团队 ...
- web.xml 组件加载顺序
<web-app> <display-name></display-name> WEB应用的名字 <description></descr ...
- VB6 创建控制台应用程序
' 功能:为VB程序创建一个consolewindow.Private Declare Function AllocConsole Lib "kernel32" () As Lon ...
- hashlib 加密模块使用说明
import hashlib #hashilib 模块 m = hashlib.md5() m.update('hello 天王盖地虎'.encode(encoding = 'utf-8)) m.h ...
- as3 air 获取文件夹下的所有文件
private function getFile(directory:File) { var files:Array = directory.getDirectoryListing(); for(va ...
- vue基础——组件(组件嵌套)
介绍 vue中页面是由组件组成的,即以.vue结尾的文件. .vue文件由三部分组成,分别是template.script.style. 分别写html.js.css代码. 组件之间可以互相嵌套.所以 ...
- java.util包简介
java.util包含集合框架.遗留的 collection 类.事件模型.日期和时间设施.国际化和各种实用工具类(字符串标记生成器.随机数生成器和位数组.日期Date类.堆栈Stack类.向量Vec ...