不多说了,经历了很多莫名其妙的错误最后终于安装好了,直接放安装脚本:

#!/bin/bash
#安装时要注意有些库可能安装失败以及安装caffe有和protobuf相关错误时可能需要重新对protobuf进行make install
cd /home/zw/softwares #需要事先下载对应版本的cuda
sudo dpkg -i cuda-repo-ubuntu1604---local-ga2_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda cd /home/zw/git_home/ #我存放git项目的目录
git clone https://github.com/google/protobuf.git
sudo apt-get install autoconf automake libtool curl make g++ unzip
cd protobuf
./autogen.sh
./configure --prefix=/usr
make -j8
make check -j8
sudo make install -j8
sudo ldconfig # refresh shared library cache. cd /home/zw/git_home/
git clone https://github.com/BVLC/caffe.git
cd caffe
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
cp Makefile.config.example Makefile.config #config中如果启用anaconda目录改成anaconda2(安装时默认名称),否则sudo make pycaffe无法编译成功。不过建议不需要启用anaconda目录,因为没这个必要,后续只要在PYTHONPATH路径中加入caffe和安装protobuf即可。另外,如果事先安装了opencv3.0需要在Makefile.cinfig中修改对应选项 read -rsp $'更改你的Makefile.config, 完成后Press any key to continue...\n' -n1 key make all -j8
make test -j8
make runtest make pycaffe -j8 cd /home/zw/git_home/protobuf/python
~/anaconda2/bin/python setup.py install #安装对应版本的protobuf,这里要特别注意,如果使用conda安装最新版本的protobuf,可能出现不兼容问题的,因为上面的caffe是用这个版本的protobuf编译的,切记!这里是我自己尝试出来的,花了不少时间
#echo "export PYTHONPATH=~/git_home/protobuf/python:$PYTHONPATH" >> ~/.bashrc #如果你用的时zsh,那么应该导入到~/.zshrc
echo "export PYTHONPATH=~/git_home/caffe/python:$PYTHONPATH" >> ~/.bashrc
echo "export PATH=~/git_home/caffe/build/tools:$PATH" >> ~/.bashrc

Makefile.config如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV :=
# USE_LEVELDB :=
# USE_LMDB := # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := # Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3 #事先安装了使用了opencv3,这里要启用 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda #使用了cuda,这里要启用
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2. \
/usr/lib/python2./dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
#ANACONDA_HOME := $(HOME)/anaconda2
#PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2. \
# $(ANACONDA_HOME)/lib/python2./site-packages/numpy/core/include # Uncomment to use Python (default is Python )
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3./dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := # Whatever else you find you need goes here.
#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
#LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := # enable pretty build (comment to see full commands)
Q ?= @

ubuntu16.04 安装 caffe cuda 相关流程的更多相关文章

  1. Ubuntu16.04安装Caffe最全最详细教程(CPU)

    转载请附上本文链接:https://www.cnblogs.com/acgoto/p/11570188.html 一.前言 为了安装caffe,本人已经在centos7.x上试错了1次,目前弃疗~:在 ...

  2. Ubuntu16.04安装Caffe

    一.安装ccmake ccmake和cmake的功能是一样的,但它很方便设置编译前的一些参数,安装只需从官网下载压缩包,解压,最后将解压得到的文件夹中的bin文件夹的路径加入PATH环境变量中即可. ...

  3. ubuntu16.04 安装caffe以及python接口

    http://blog.csdn.net/qq_25073253/article/details/72571714http://blog.csdn.net/greed7480/article/deta ...

  4. ubuntu16.04安装nvidia ,cuda(待完善)

    ubuntu16.04安装nvidia 1.首先查看自己的pc显卡的型号 ubuntu16.04 查看方法: 查看GPU型号 :lspci | grep -i nvidia 查看NVIDIA驱动版本: ...

  5. # Ubuntu16.04安装nvidia驱动+CUDA+cuDNN

    Ubuntu16.04安装nvidia驱动+CUDA+cuDNN 准备工作 1.查看GPU是否支持CUDA lspci | grep -i nvidia 2.查看Linux版本 uname -m &a ...

  6. ubuntu16.04安装cuda8.0试错锦集

    ubuntu16.04安装cuda8.0试错锦集 参考文献: [http://www.jianshu.com/p/35c7fde85968] [http://blog.csdn.net/sinat_1 ...

  7. Ubuntu16.04安装cuda9.0+cudnn7.0

    Ubuntu16.04安装cuda9.0+cudnn7.0 这篇记录拖了好久,估计是去年6月份就已经安装过几遍,然后一方面因为俺比较懒,一方面后面没有经常在自己电脑上跑算法,比较少装cuda和cudn ...

  8. Ubuntu16.04安装Redis并配置

    Ubuntu16.04安装Redis并配置 2018年05月22日 10:40:35 Hello_刘 阅读数:29146   Ubuntu16.04安装Redis并配置 1):安装: 1:终端命令下载 ...

  9. Ubuntu16.04安装Ambari 2.7.3

    概念了解 Ambair介绍 Apache Ambari是一个用于支持大数据软件供应 管理与监控软件.它也是一个分布式软件,分为Ambair-Server与Ambari-Client两个部分.在生产环境 ...

随机推荐

  1. fcntl文件锁操作

    文件锁经常应用于两个方面:1.一是锁定文件中的临界数据,比如并发投票时文件记录的投票数2.二是利用具有互斥性质的写锁,实现进程的并发控制. /*使用文件锁*/<F5>#include &l ...

  2. python【文件操作:修改文件】

  3. ElasticStack系列之十四 & ElasticSearch5.x bulk update 中重复 id 性能骤降

    目前在绝对多数公司在使用 ElasticSearch 将其当做数据库使用,将多个数据库中的数据同步到 ElasticSearch 索引是非常常见的应用场景.那么自然而然就会涉及到数据频繁的新增和更新, ...

  4. nltk31_twitter情感分析

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...

  5. java基础-Math类常用方法介绍

    java基础-Math类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Math类概念 Math 类包含用于执行基本数学运算的方法,如初等指数.对数.平方根和三角函 ...

  6. kibana做图表无法选取需要选的字段

    kibana做图表无法选取需要选的字段,即通过term的方式过滤选择某一个field时发现列表里无此选项. 再去discover里看,发现此字段前面带有问号,点击后提示这个字段未做索引,不能用于vis ...

  7. Redis总体 概述,安装,方法调用

    1 什么是redis redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合)和zset( ...

  8. bzoj千题计划151:bzoj1131: [POI2008]Sta

    http://www.lydsy.com/JudgeOnline/problem.php?id=1131 dp[i]=dp[fa[i]]-son[i]+n-son[i] #include<cst ...

  9. newcoder Wannafly挑战赛4 树的距离

    https://www.nowcoder.com/acm/contest/35/D 假设要查询x的子树中,与x的距离>=y的距离和 那么如果有这么一个 由x的子树中的点到x的距离构成的序列,且按 ...

  10. Coffeescript的安装与编译

    安装 npm install -g coffee-script 在cmd中输入coffee可以进入coffeescript的命令行模式(REPL),然而到我写完这篇博文为止,我觉得这并没有什么卵用 C ...