CCF CSP 201709-4 通信网络
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址
CCF CSP 201709-4 通信网络
问题描述
由于保密工作做得很好,并不是所有部门之间都互相知道彼此的存在。只有当两个部门之间可以直接或间接传递信息时,他们才彼此知道对方的存在。部门之间不会把自己知道哪些部门告诉其他部门。
上图中给了一个4个部门的例子,图中的单向边表示通路。部门1可以将消息发送给所有部门,部门4可以接收所有部门的消息,所以部门1和部门4知道所有其他部门的存在。部门2和部门3之间没有任何方式可以发送消息,所以部门2和部门3互相不知道彼此的存在。
现在请问,有多少个部门知道所有N个部门的存在。或者说,有多少个部门所知道的部门数量(包括自己)正好是N。
输入格式
接下来M行,每行两个整数a, b,表示部门a到部门b有一条单向通路。
输出格式
样例输入
1 2
1 3
2 4
3 4
样例输出
样例说明
评测用例规模与约定
对于60%的评测用例,1 ≤ N ≤ 100,1 ≤ M ≤ 1000;
对于100%的评测用例,1 ≤ N ≤ 1000,1 ≤ M ≤ 10000。
解析
如果图无环,计算每一个顶点父节点的个数及子节点的个数,如果二者之和加一等于总节点的个数,那么就是所求解的知道N个节点存在的节点。
统计一个节点父节点的个数可以通过N个深度优先搜索得到。从每一个节点开始进行深度优先搜索,每到达一个节点,该节点的计数加一。复杂度为O(V(V+E))
将图的所有边反向,便可以统计一个节点子节点的个数。
如果图存在环,在同一个强连通分量内的节点互相为父子节点,上面的方法便失效了。解决方案是首先进行强连通分量的分解。代码中使用了Kosaraju算法进行强连通分量的分解。复杂度为O(V+E)
分解后得到每一个顶点的强连通分量标号。
然后计算每一个节点父强连通分量的个数与子强连通分量的个数。这一步从每一个强连通分量中选择一个顶点开始进行深度优先搜索,如果当前所在强连通分量的标签与起始节点强连通分量标签不同,则该节点计数加一。
如果一个顶点父强连通分量的个数加上子强连通分量的个数加一等于总强连通分量个数,那么这个节点知道所有节点的存在。
代码
C++
#include <iostream>
#include <vector>
#include <algorithm>
#define MAX_V 1001
using namespace std; int N, M;
vector<int> G[MAX_V], rG[MAX_V];
vector<int> postorder;
bool used[MAX_V];
int label[MAX_V]; // 每一个节点所属强连通分量的标号
int sccv[MAX_V]; // 每一个强连通分量的一个顶点
int nparent[MAX_V], nchild[MAX_V]; // 每一个节点父/子强连通分量个数 // 生成图的后序遍历
void dfs(int u) {
for(int i=; i<G[u].size(); i++) {
int v = G[u][i];
if(!used[v]) {
used[v] = true;
dfs(v);
}
}
postorder.push_back(u);
} int rdfs(int u, int l) {
label[u] = l;
for(int i=; i<rG[u].size(); i++) {
int v = rG[u][i];
if(!used[v]) {
used[v] = true;
rdfs(v, l);
}
}
} // Kosaraju算法 分解强连通分量
int SCC() {
fill(used, used+MAX_V, );
for(int n=; n<=N; n++) {
if(!used[n]) {
used[n] = true;
dfs(n);
}
}
fill(used, used+MAX_V, );
int l = ;
for(int n=N-; n>=; n--) {
int v = postorder[n];
if(!used[v]) {
l++;
used[v] = true;
rdfs(v, l);
sccv[l] = v;
}
}
return l;
} // 统计u所在强连通分量能够到达的其它强连通分量
void dfs2(int u, int l, int (&nparent)[MAX_V], vector<int> (&G)[MAX_V]) {
if(label[u] != l) nparent[u]++;
for(int i=; i<G[u].size(); i++) {
int v = G[u][i];
if(!used[v]) {
used[v] = true;
dfs2(v, l, nparent, G);
}
}
} int main() {
cin >> N >> M;
for(int m=; m<M; m++) {
int a, b;
cin >> a >> b;
G[a].push_back(b);
rG[b].push_back(a);
} int numc = SCC(); // 统计每一个顶点父强连通分量个数
for(int i=; i<=numc; i++) {
fill(used, used+MAX_V, );
int v = sccv[i];
used[v] = true;
dfs2(v, label[v], nparent, G);
} // 统计每一个顶点子强连通分量个数
for(int i=; i<=numc; i++) {
fill(used, used+MAX_V, );
int v = sccv[i];
used[v] = true;
dfs2(v, label[v], nchild, rG);
} int cnt = ;
for(int n=; n<=N; n++) {
// 如果父强连通分量个数加子强连通分量个数加一等于总强连通分量个数
if(nparent[n]+nchild[n]+==numc) cnt++;
}
cout << cnt;
}
CCF CSP 201709-4 通信网络的更多相关文章
- CCF CSP 201403-4 无线网络
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201403-4 无线网络 问题描述 目前在一个很大的平面房间里有 n 个无线路由器,每个无线路 ...
- CCF CSP 201503-4 网络延时
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201503-4 网络延时 问题描述 给定一个公司的网络,由n台交换机和m台终端电脑组成,交换机 ...
- ccf认证 201709-4 通信网络 java实现
试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内 ...
- csp 通信网络
http://blog.csdn.net/zyy_1998/article/details/78334496 试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内存限制: 25 ...
- 通信网络 ccf
试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只 ...
- CCF(通信网络):简单DFS+floyd算法
通信网络 201709-4 一看到题目分析了题意之后,我就想到用floyd算法来求解每一对顶点的最短路.如果一个点和任意一个点都有最短路(不为INF),那么这就是符合的一个答案.可是因为题目超时,只能 ...
- 小dai浅谈通信网络(一)——引子
说起通信网络,首先来看一个场景: 场景模式: 小明和小刚在闹市碰面. 小明对小刚大声喊道:"小刚,你好啊!" 小刚摇手答到:"你好,小明!" 就这么几句简单的话 ...
- 浅谈通信网络(三)——TCP/IP协议
简介 Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议.In ...
- CCF CSP 认证
参加第八次CCF CSP认证记录 代码还不知道对不对,过两天出成绩. 成绩出来了,310分. 100+100+100+10+0: 考试13:27开始,17:30结束,提交第4题后不再答题,只是检查前四 ...
随机推荐
- PHP7 学习笔记(二)PHP5.9 升级到PHP7 遇到的一些坑的记录(php-fpm 图解)
apache_event_php-fpm 示意图: nginx-php-fpm示意图: Worker-Master-Server TCP-Nginx_PHP Nginx-FastCGI 1.使用$_G ...
- springboot中@webfilter注解的filter时注入bean都是null
在使用@Webfilter注解Filter的情况下,不上外部tomcat时是没有问题的.但是在tomcat下运行时,filter中注入的bean就都是null 解决办法: 一:去掉@Webfilter ...
- springboot 以jar方式在linux后台运行
linux命令如下: nohup java -jar 自己的springboot项目.jar >日志文件名.log 2>&1 & 命令解释: nohup:不挂断地运行命令, ...
- 【Swift】UIAlertController使用
func clickButton1(){ 创建uialertcontroller var alertCtl : UIAlertController = UIAlertController(title: ...
- SVN 使用笔记
SVN中检出 和 导出 的区别 检出得到的文件夹中,是受SVN客户端控制的,对其进行文件或文件夹的增删改操作都会被SVN客户端识别出来,对其可以进行update.commit操作.其中含有.svn隐藏 ...
- bzoj1190 [HNOI2007]梦幻岛宝珠
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1190 [题解] 首先,我们把所有物品都分解成$a\times 2^b$的形式,然后把物品按 ...
- rsync同步文件(多台机器同步代码...)
常用组合 rsync -av --delete-after --exclude-from="a.txt" x/x -e ssh x:/x/x a.txt 制定忽略的文件, ...
- [Openwrt 扩展下篇] Openwrt搭建私有云Owncloud 9
网上很多资料讲用Linux打造owncloud构建私有云 ,花了些时间研究了下,我将之前的需求打造成了Openwrt下的Owncloud 9.其实网上还有Seafile.大家对比来看下知乎的评论,其实 ...
- hdu 1716 排列2(DFS搜索)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1716 排列2 Time Limit: 1000/1000 MS (Java/Others) Me ...
- 突破XSS字符限制执行任意JS代码
突破XSS字符限制执行任意JS代码 一.综述 有些XSS漏洞由于字符数量有限制而没法有效的利用,只能弹出一个对话框来YY,本文主要讨论如何突破字符数量的限制进行有效的利用,这里对有效利用的定义是可以不 ...