【神经网络】自编码聚类算法--DEC (Deep Embedded Clustering)
1.算法描述
最近在做AutoEncoder的一些探索,看到2016年的一篇论文,虽然不是最新的,但是思路和方法值得学习。论文原文链接 http://proceedings.mlr.press/v48/xieb16.pdf,论文有感于t-SNE算法的t-分布,先假设初始化K个聚类中心,然后数据距离中心的距离满足t-分布,可以用下面的公式表示:
其中 i表示第i样本,j表示第j个聚类中心, z表示原始特征分布经过Encoder之后的表征空间。$q_{ij}$可以解释为样本i属于聚类j的概率,属于论文上说的"软分配"的概念。那么“硬分配”呢?那就是样本一旦属于一个聚类,其余的聚类都不属于了,也就是其余聚类的概率为0。由于$\alpha$在有label的训练计划中,是在验证集上进行确定的,在该论文中,全部设置成了常数1。
然后神奇的事情发生了,作者发明了一个辅助分布也用来衡量样本属于某个聚类的分布,就是下面的公式了:
其中$f_{j}=\sum_{i}q_{ij}$也许你会疑问,上面这个玩意怎么来的?作者的论文中说主要考虑一下三点:
- 强化预测。q分布为软分配的概率,那么p如果使用delta分布来表示,显得比较原始。
- 置信度越高,属于某个聚类概率越大。
- 规范每个质心的损失贡献,以防止大类扭曲隐藏的特征空间。分子中那个$f_{j}$就是做这个的。
假设分布有了,原始的数据分布也有了,剩下衡量两个分布近似的方法,作者使用了KL散度,公式如下:
这个也是DEC聚类的损失函数。有了具体的公式,明确一下每次迭代更新需要Update的参数:
第一个公式是优化AE中的Encoder参数,第二个公式是优化聚类中心。也就是说作者同时优化了聚类和DNN的相关参数。
作者设计的网络概念图如下:
DEC算法由两部分组成,第一部分会预训练一个AE模型;第二部分选取AE模型中的Encoder部分,加入聚类层,使用KL散度进行训练聚类。
2.实验分析
实验部分比较了几种算法,比较的指标是ACC,对比表格如下:
DEC的效果还是比较不错的,另外值得一提的是DEC w/o backprop算法,是将第一部分Encoder的参数固定之后,不再参加训练,只更新聚类中心的算法,从结果上看,并没有两者同时训练效果来的好。
DEC的第一部分会预训练AE,那么AE对于整个算法的贡献是什么?接下来,作者分析了AE和不同算法组合的情况,效果如下:
从表中我们看到,加了AE之后,kmeans的提升很大,SEC和LDMGI提升不大,甚至后者还降了一点。
DEC会初始化K个聚类中心,与kmeans一样,聚类中心的数目的确定始终是个难点。论文的最后部分,讨论了怎么确定聚类的中心K。主要是两个指标,用来衡量不同K值下的取值。
- $NMI(l,c)=\frac{I(l,c)}{\frac{1}{2}\left [ H\left ( l \right )+H\left ( c \right ) \right ]}$ 是存在label的比较常用的衡量聚类的方法。
- $G=\frac{L_{train}}{L_{validation}}$ 其中L表示不同样本集合上的损失,该指标用来衡量过拟合的程度。
上图展示了不同聚类中心数目下NMI和Generalizability的走势,从上面可以看出在9的时候,存在明显的拐点。
3.源码分析
论文使用的Caffe写的,对于我这种半路出家的和尚有点吃力,网上找了一个keras的实现代码,https://github.com/XifengGuo/DEC-keras/blob/master/DEC.py
首先是DEC的预训练的部分,预训练的模型先保存了起来方便训练聚类使用:
def pretrain(self, x, y=None, optimizer='adam', epochs=200, batch_size=256, save_dir='results/temp'):
print('...Pretraining...')
self.autoencoder.compile(optimizer=optimizer, loss='mse')
self.autoencoder.fit(x, x, batch_size=batch_size, epochs=epochs, callbacks=cb)
self.autoencoder.save_weights(save_dir + '/ae_weights.h5')
self.pretrained = True
在进行训练之前,我们看一下作者构造的一个新的网络层
class ClusteringLayer(Layer):
..... def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
//在这里定义了需要训练更新的权重,就是说把K个聚类当作了“权重”来进行更新了
self.clusters = self.add_weight((self.n_clusters, input_dim), initializer='glorot_uniform', name='clusters')
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True def call(self, inputs, **kwargs):
""" student t-distribution, as same as used in t-SNE algorithm.
q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it.
Arguments:
inputs: the variable containing data, shape=(n_samples, n_features)
Return:
q: student's t-distribution, or soft labels for each sample. shape=(n_samples, n_clusters)
"""
q = 1.0 / (1.0 + (K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2) / self.alpha))
q **= (self.alpha + 1.0) / 2.0
q = K.transpose(K.transpose(q) / K.sum(q, axis=1))
return q def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
return input_shape[0], self.n_clusters def get_config(self):
config = {'n_clusters': self.n_clusters}
base_config = super(ClusteringLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
接下来就是第二部分fit的过程了
def fit(self, x, y=None, maxiter=2e4, batch_size=256, tol=1e-3,
update_interval=140, save_dir='./results/temp'): # Step 1: initialize cluster centers using k-means
kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(self.encoder.predict(x))
y_pred_last = np.copy(y_pred)
self.model.get_layer(name='clustering').set_weights([kmeans.cluster_centers_]) # Step 2: deep clustering loss = 0
index = 0
index_array = np.arange(x.shape[0])
for ite in range(int(maxiter)):
if ite % update_interval == 0:
q = self.model.predict(x, verbose=0)
p = self.target_distribution(q) # update the auxiliary target distribution p # evaluate the clustering performance
y_pred = q.argmax(1)
if y is not None:
acc = np.round(metrics.acc(y, y_pred), 5)
nmi = np.round(metrics.nmi(y, y_pred), 5)
ari = np.round(metrics.ari(y, y_pred), 5)
loss = np.round(loss, 5)
logdict = dict(iter=ite, acc=acc, nmi=nmi, ari=ari, loss=loss)
logwriter.writerow(logdict)
print('Iter %d: acc = %.5f, nmi = %.5f, ari = %.5f' % (ite, acc, nmi, ari), ' ; loss=', loss) # check stop criterion
delta_label = np.sum(y_pred != y_pred_last).astype(np.float32) / y_pred.shape[0]
y_pred_last = np.copy(y_pred)
if ite > 0 and delta_label < tol:
print('delta_label ', delta_label, '< tol ', tol)
print('Reached tolerance threshold. Stopping training.')
logfile.close()
break # train on batch
# if index == 0:
# np.random.shuffle(index_array)
idx = index_array[index * batch_size: min((index+1) * batch_size, x.shape[0])]
loss = self.model.train_on_batch(x=x[idx], y=p[idx])
index = index + 1 if (index + 1) * batch_size <= x.shape[0] else 0 # save intermediate model
if ite % save_interval == 0:
print('saving model to:', save_dir + '/DEC_model_' + str(ite) + '.h5')
self.model.save_weights(save_dir + '/DEC_model_' + str(ite) + '.h5') ite += 1 return y_pred
文章只是简单分析了一下,具体细节还是看源码来得实在。
想到的一些问题如下:
1.DEC的假设分布从实验效果上看起来不错,是否存在其他的比较牛逼的分布呢?
2.DEC聚类不能产生新的样本,这也是VADE类似的聚类算法的优势,抽空再看看。
3.DEC的使用除了聚类,还有什么呢?个人能想到的一点就是做离散化,相比于AE的那种Encoder的抽象降维来说,DEC可以产生离散的变量,而不是多维的连续变量。后续可以在工程中尝试一下。
4.更多的确定K的方法有哪些? 后来找到这个文章,适当补充 https://blog.csdn.net/sinat_33363493/article/details/52496011。
【神经网络】自编码聚类算法--DEC (Deep Embedded Clustering)的更多相关文章
- 论文解读(IDEC)《Improved Deep Embedded Clustering with Local Structure Preservation》
Paper Information Title:<Improved Deep Embedded Clustering with Local Structure Preservation>A ...
- AP聚类算法(Affinity propagation Clustering Algorithm )
AP聚类算法是基于数据点间的"信息传递"的一种聚类算法.与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数.AP算法寻找的"examplars& ...
- 论文解读(DAEGC)《Improved Deep Embedded Clustering with Local Structure Preservation》
Paper Information Title:<Attributed Graph Clustering: A Deep Attentional Embedding Approach>Au ...
- 模糊聚类算法(FCM)
伴随着模糊集理论的形成.发展和深化,RusPini率先提出模糊划分的概念.以此为起点和基础,模糊聚类理论和方法迅速蓬勃发展起来.针对不同的应用,人们提出了很多模糊聚类算法,比较典型的有基于相似性关系和 ...
- DDos攻击,使用深度学习中 栈式自编码的算法
转自:http://www.airghc.top/2016/11/10/Dection-DDos/ 最近研究了一篇论文,关于检测DDos攻击,使用了深度学习中 栈式自编码的算法,现在简要介绍一下内容论 ...
- 关于k-means聚类算法的matlab实现
在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类 ...
- SPARK在linux中的部署,以及SPARK中聚类算法的使用
眼下,SPARK在大数据处理领域十分流行.尤其是对于大规模数据集上的机器学习算法.SPARK更具有优势.一下初步介绍SPARK在linux中的部署与使用,以及当中聚类算法的实现. 在官网http:// ...
- ML: 聚类算法-概论
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研 ...
- ML.NET技术研究系列-2聚类算法KMeans
上一篇博文我们介绍了ML.NET 的入门: ML.NET技术研究系列1-入门篇 本文我们继续,研究分享一下聚类算法k-means. 一.k-means算法简介 k-means算法是一种聚类算法,所谓聚 ...
随机推荐
- ngRouter和ui-router区别
在单页面应用中要把各个分散的视图给组织起来是通过路由机制来实现的.本文主要对 AngularJS 原生的 ngRoute 路由模块和第三方路由模块 ui.router 的用法进行简单介绍,并做一个对比 ...
- Python学习之路 (五)爬虫(四)正则表示式爬去名言网
爬虫的四个主要步骤 明确目标 (要知道你准备在哪个范围或者网站去搜索) 爬 (将所有的网站的内容全部爬下来) 取 (去掉对我们没用处的数据) 处理数据(按照我们想要的方式存储和使用) 什么是正则表达式 ...
- 通过条件注解@Conditional细粒度的选择bean实例
在进行spring进行开发时,当某个接口有多种实现方式并且我们只想让一种生效时,比如声明如下一个接口和两个实现: public interface LanggageService { String s ...
- C++内存管理变革(6):通用型垃圾回收器 - ScopeAlloc
本文已经迁移到:http://cpp.winxgui.com/cn:a-general-gc-allocator-scopealloc C++内存管理变革(6):通用型垃圾回收器 - ScopeAll ...
- IOPS、带宽(band width)、吞吐量 (throughput)
SAN和NAS存储一般都具备2个评价指标:IOPS和带宽(throughput),两个指标互相独立又相互关联.体现存储系统性能的最主要指标是IOPS. IOPS (Input/Output Per ...
- mysql8.0版本skip-grant-tables出现的新问题
MySQL 初始化 mysqld --initialize 的时候会有密码,就这个样子, 可是毕竟总有人跟我一样,不熟悉安装过程,没有注意这一密码这一项,导致你现在不知道密码的尴尬处境,或者说你是正常 ...
- Linux 和 ubuntu安装redis
Linux 下安装reids 下载地址:http://redis.io/download,下载最新稳定版本. 本教程使用的最新文档版本为 2.8.17,下载并安装: $ wget http://dow ...
- 一图看懂hadoop MapReduce工作原理
MapReduce执行流程及单词统计WordCount示例
- 机器学习练习(一)-使用jupyter notebook
一个简单的分类机器学习练习,基于sklearn.sklearn是Python中的一个机器学习模块.它其中有数据.非常方便我们用它来训练机器学习的模型,和验证我们的想法.(官方网站:https://sc ...
- 版本管理工具git与svn简介
版本管理工具 版本管理工具简介 常见版本管理工具 cvs(Concurrent Versions System) vss(Visual SourceSafe) svn 常用的版本管理工具 git 流行 ...