Combination Sum:所有数都正数,原始数组中没有重复的数字,生成的子数组中可以重复使用某一个数值

Combination Sum II : 所有数都正数,原始数组中有重复的数字,生成的子数组中不能重复使用某一个数值

Combination Sum III: 所有数都正数且只能是1到9之间的数,原始数组中没有重复的数字,生成的子数组中不能重复使用某一个数值

Combination Sum IV: 所有数都正数,原始数组中没有重复的数字,生成的子数组中可以重复使用某一个数值。但是这个不再是把所有的子数组找出来,而是找所有可能的子数组的个数。

39. Combination Sum

依旧与subsets问题相似,每次选择这个数是否参加到求和中。相对于subsets问题,增加一个target变量用于记录数值的和,并且result的push_back的条件也随之发生变化。

因为所有数字都是大于0的,所以target小于0就可以结束循环了。

因为是可以重复的,所以每次递归还是在i上,如果不能重复,就可以变成i+1。

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> result;
vector<int> res;
int length = candidates.size();
if(length <= )
return result;
combination(candidates,result,res,target,);
return result;
}
void combination(vector<int> candidates,vector<vector<int>> &result,vector<int> &res,int target,int start){
if(target < )
return;
if(target == ){
result.push_back(res);
}
for(int i = start;i < candidates.size();i++){
res.push_back(candidates[i]);
combination(candidates,result,res,target-candidates[i],i);
res.pop_back();
}
}
};

https://www.jianshu.com/p/b2037dd2841a

类似于全排列和n皇后,用dfs形成一个n * m的matrix的遍历形式

40. Combination Sum II

与39题的不同在于:第一,本题有重复节点;第二,每个节点只能用一次,即没有自环

如何处理自环问题?每次搜索新路径的时候都从其下一个节点开始,而不是从它本身开始;

如何处理去重问题?每次回溯的时候,刚刚被剔除的节点不能在任何时候再被重新加入到路径上。如何处理这个“任何时候”呢?要么用map标记被剔除的节点直到路径搜索结束,要么应用排序,将所有有相同出权值的节点都放到一起, 通过排序就可以实现,这样可以方便找到下一个出权值不同的节点。

除了这两个部分,其他的与 Combination Sum一样。

class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<int>> result;
vector<int> res;
int length = candidates.size();
if(length <= || target <= )
return result;
sort(candidates.begin(),candidates.end());
combination(candidates,result,res,target,);
return result;
}
void combination(vector<int> candidates,vector<vector<int>> &result,vector<int> &res,int target,int start){
if(target < )
return;
if(target == ){
result.push_back(res);
return;
}
for(int i = start;i < candidates.size();i++){
res.push_back(candidates[i]);
combination(candidates,result,res,target-candidates[i],i+);
res.pop_back();
while(i < candidates.size() - && candidates[i] == candidates[i+])
i++;
}
}
};

http://www.cnblogs.com/tengdai/p/9257266.html

Combination Sum II是数组里面有重复的数字,但不像I那样允许你在你本身上进行重复,所以要用i+1

216. Combination Sum III

这个题与前两者不同的是,规定了组合的数字的个数,这样你就只能递归到第k层了,相当于在递归截止条件处要增加东西。

还有就是不再是一个输入的数组,而是直接1到9。原本发现需要把1到9输入到数组中,后来发现直接在递归里面写也是可以的。

class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int> > result;
if(k <= || n <= )
return result;
vector<int> res;
int start = ;
combinationSum3(k,n,result,res,start);
return result;
}
void combinationSum3(int k,int n,vector<vector<int> >& result,vector<int>& res,int start){
if(n < )
return;
if(res.size() == k){
if(n == )
result.push_back(res);
return;
}
for(int i = start;i <= ;i++){
res.push_back(i);
combinationSum3(k,n-i,result,res,i+);
res.pop_back();
}
}
};

377. Combination Sum IV

这个题与39. Combination Sum 几乎一样,但是39. Combination Sum 是找所有可能的组合,这个题是找所有可能的子数组的个数,使用dfs也可以做,但在平台上会超时,采用dp的方式时间复杂度小。

dp[i]表示利用当前数组数字到数字i可以生成的个数。

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<unsigned int> dp(target + );
dp[] = ;
for(int i = ;i <= target;i++){
for(int j = ;j < nums.size();j++){
if(i - nums[j] >= )
dp[i] += dp[i - nums[j]];
}
}
return (int)dp[target];
}
};

注意:[3,33,333]
   10000

   这种情况,如果vector是int初始化,会报int相加越界的错误

http://www.cnblogs.com/grandyang/p/5705750.html

leetcode 39. Combination Sum 、40. Combination Sum II 、216. Combination Sum III的更多相关文章

  1. Leetcode之回溯法专题-40. 组合总和 II(Combination Sum II)

    Leetcode之回溯法专题-40. 组合总和 II(Combination Sum II) 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使 ...

  2. 记录我的 python 学习历程-Day13 匿名函数、内置函数 II、闭包

    一.匿名函数 以后面试或者工作中经常用匿名函数 lambda,也叫一句话函数. 课上练习: # 正常函数: def func(a, b): return a + b print(func(4, 6)) ...

  3. leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes

    263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...

  4. leetcode 344. Reverse String 、541. Reverse String II 、796. Rotate String

    344. Reverse String 最基础的旋转字符串 class Solution { public: void reverseString(vector<char>& s) ...

  5. leetcode 198. House Robber 、 213. House Robber II 、337. House Robber III 、256. Paint House(lintcode 515) 、265. Paint House II(lintcode 516) 、276. Paint Fence(lintcode 514)

    House Robber:不能相邻,求能获得的最大值 House Robber II:不能相邻且第一个和最后一个不能同时取,求能获得的最大值 House Robber III:二叉树下的不能相邻,求能 ...

  6. leetcode 136. Single Number 、 137. Single Number II 、 260. Single Number III(剑指offer40 数组中只出现一次的数字)

    136. Single Number 除了一个数字,其他数字都出现了两遍. 用亦或解决,亦或的特点:1.相同的数结果为0,不同的数结果为1 2.与自己亦或为0,与0亦或为原来的数 class Solu ...

  7. lintcode 787. The Maze 、788. The Maze II 、

    787. The Maze https://www.cnblogs.com/grandyang/p/6381458.html 与number of island不一样,递归的函数返回值是bool,不是 ...

  8. 代码随想录第八天 |344.反转字符串 、541. 反转字符串II、剑指Offer 05.替换空格 、151.翻转字符串里的单词 、剑指Offer58-II.左旋转字符串

    第一题344.反转字符串 编写一个函数,其作用是将输入的字符串反转过来.输入字符串以字符数组 s 的形式给出. 不要给另外的数组分配额外的空间,你必须原地修改输入数组.使用 O(1) 的额外空间解决这 ...

  9. Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III)

    Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III) 同类题目: Leetcode之回溯法专题-39. 组合总数(Combination Sum) Lee ...

随机推荐

  1. 13、springboot之jpa

    导入包,不多说 <parent> <groupId>org.springframework.boot</groupId> <artifactId>spr ...

  2. CSS 媒体查询创建响应式网站

    使用 CSS 媒体查询创建响应式网站  适用于所有屏幕大小的设计 固定宽度的静态网站很快被灵活的响应式设计所取代,该设计可以根据屏幕大小进行上扩和下扩.利用响应式设计,无论您采用什么设备或屏幕来访问网 ...

  3. AngularJS学习 之 安装

    1. 安装好Node.js 2. 安装好Git 3. 安装好Yeoman 以管理员身份打开cmd 输入 npm install -g yo 回车即可开始安装Yeoman,具体的安装行为最好看官网的介绍 ...

  4. Spring Boot—21Actuator--监控

    https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/reference/htmlsingle/ pom.xml <dependency&g ...

  5. ArcGIS Google Map 增加虚拟图层(MapImageLayer)(转载)

    <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...

  6. WPF 中的OpenFileDialog和 OpenFolderDialog

    OpenFolderDialog: using (var dialog = new System.Windows.Forms.FolderBrowserDialog() { SelectedPath ...

  7. atitit.js 与c# java交互html5化的原理与总结.doc

    atitit.js 与c# java交互html5化的原理与总结.doc 1. 实现html5化界面的要解决的策略1 1.1. Js交互1 1.2. 动态参数个数1 1.3. 事件监听2 2. sen ...

  8. sql in interview for a job

    1.mysql下建表及插入数据 /* Navicat MySQL Data Transfer Source Server : mysql Source Server Version : 50640 S ...

  9. Automate the Sizing of your SGA in Oracle 10g

    How much memory does each of the individual components of the SGA need? Oracle now has methods to de ...

  10. JS JSON序列化 Ajax form表单

    # JS序列化 a = {"k1":"v1"} #序列化为字符串 类似python json.dumps(a) b = JSON.stringify(a) &q ...