嘟嘟嘟

dp。

刚开始我想的是dp[i][j]表示在第 i 棵树上,高度为h能吃到的最多的果子,如此能得到转移方程: dp[i][j] = max(dp[i][j + 1], dp[k][j + derta]) (k = 1~n && k != i)。但因为这样写会导致dp[k][j + derta] (k > i)的部分没有更新,所以应该把dp试的两胃交换一下。这样dp方程就能正常转移了:

    dp[i][j] = max(dp[i + 1][j], max(dp[i + derta][k]) (k = 1~n && k != j) )

然而这样的时间复杂度是O(h * n * n)的,过不了。

优化:观察 max(dp[i + derta][k]) (k = 1~n && k != j),实际上我们就是在高度为i + derta 的所有状态中取一个Max,所以可以开一个数组Max[i]代表高度为 i 时dp[i][j]的最大值,然后每一次求完dp[i][j]时动态更新Max[i]即可。所以转移方程就变成了

    dp[i][j] = max(dp[i +1][j], Max[i +derta])

时间复杂度O(h * n)。

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<stack>
#include<queue>
#include<vector>
#include<cctype>
using namespace std;
#define space putchar(' ')
#define enter puts("")
#define Mem(a) memset(a, 0, sizeof(a))
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int max_hig = 2e3 + ;
const int maxn = 5e3 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << ) + (ans << ) + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar(x % + '');
} int n, h, d;
int a[max_hig][maxn], dp[max_hig][maxn], Max[max_hig]; int main()
{
n = read(), h = read(), d = read();
for(int i = ; i <= n; ++i)
{
int x = read();
for(int j = ; j <= x; ++j) a[read()][i]++;
}
for(int i = h; i >= ; --i)
for(int j = ; j <= n; ++j)
{
dp[i][j] = dp[i + ][j];
if(i + d <= h) dp[i][j] = max(dp[i][j], Max[i + d]);
if(a[i][j]) dp[i][j] += a[i][j];
Max[i] = max(Max[i], dp[i][j]);
}
int ans = ;
for(int i = ; i <= n; ++i) ans = max(ans, dp[][i]);
write(ans); enter;
return ;
}

[BJWC2008]雷涛的小猫的更多相关文章

  1. P1107 [BJWC2008]雷涛的小猫

    题目描述 雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的).在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了. 可是有一天,雷涛下课回 ...

  2. 【洛谷P1107】 [BJWC2008]雷涛的小猫

    雷涛的小猫 题目链接 n^2DP比较好想, f[i][j]表示第i棵树高度为j的最大收益 直接从上到下转移即可,每次记录下max f[1~n][j] 用于下面的转移 f[i][j]=max(f[i][ ...

  3. BZOJ1270[BJWC2008]雷涛的小猫

    雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的).在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了. 可是有一天,雷涛下课回到寝室,却 ...

  4. [BJWC2008]雷涛的小猫 dp

    题目背景 原最大整数参见P1012 题目描述 雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的).在他的照顾下,小猫很快恢复了健康,并且愈发的 ...

  5. BZOJ1270或洛谷1107 [BJWC2008]雷涛的小猫

    BZOJ原题链接 洛谷原题链接 \(DP\)水题. 定义\(f[i][j]\)表示小猫在高度\(i\),位于第\(j\)棵树时最多能吃到的柿子的数量.分为直接往下跳和跳到另一棵树两个决策. 那么很容易 ...

  6. 洛谷P1107[BJWC2008]雷涛的小猫题解

    题目 这个题可以说是一个很基础偏中等的\(DP\)了,很像\(NOIpD1T2\)的难度,所以这个题是很好想的. 简化题意 可以先简化一下题意,这个题由于从上面向下调和从下向上爬都是一样的,所以我们就 ...

  7. 洛谷P1107 & BZOJ1270 [BJWC2008]雷涛的小猫

    一道DP. 给你一个矩阵里面有很多数,你需要从上往下找到一种跳跃方法使得经过的点的价值之和最大. 具体题面见链接 洛谷P1107 BZOJ1270 很明显是一个二维的DP. #include<b ...

  8. 洛谷P1107 [BJWC2008]雷涛的小猫 题解

    题面 以下是luogu给的标签 但字符串是什么鬼.... 玄学... 哦吼~ #include<cstdio> #include<iostream> using namespa ...

  9. BZOJ_1270_雷涛的小猫_(动态规划)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1270 有n棵树,高度为h.一只猫从任意一棵树的树顶开始,每次在同一棵树上下降1,或者跳到其他树 ...

随机推荐

  1. [javaSE] 数组(排序-冒泡排序)

    两层嵌套循环,外层控制循环次数,内层循环进行比较 for(int x=0;x<arr.length-1;x++){ for(int y=0;y<arr.length;y++){ if(ar ...

  2. [C#]简单离线注册码生成与验证

    本文使用RSA非对称加密和Base64简单地实现离线注册码的生成与验证功能. 主要思路就是提供者持有密钥,通过RSA加密客户机标识或时间标识,再通过Base64加密成不太难看的注册码,然后分发给客户机 ...

  3. JDBC连接数据库的完整实例

    package com.sinovatech.util;   import java.sql.CallableStatement; import java.sql.Connection; import ...

  4. vue2.0 element-ui中input的@keyup.native.enter='onQuery'回车查询刷新整个表单的解决办法

    项目中用的element-ui是v1.4.3版本 实现的功能是在input中输入查询的名称,按下键盘回车键,可以查询表格中数据 问题是,我输入名称,按下回车,会整个表单刷新,搜索条件也被清空:代码如下 ...

  5. 献给java求职路上的你们

    为了更好的树立知识体系,我附加了相关的思维导图,分为pdf版和mindnote版.比如java相关的导图如下: 由于时间仓促,有些地方未写完,后面会继续补充.如有不妥之处,欢迎及时与我沟通. 相关概念 ...

  6. sql中 设置区分大小写

    CI 指定不区分大小写,CS 指定区分大小写alter table 表名 alter column 字段 nvarchar(100) collate chinese_prc_cs_as --区分大小写 ...

  7. Pig UDF 用户自定义函数

    注册UDF do.pig的内容如下: register /xx/yy.jar data = load 'data'; result = foreach data generate aa.bb.Uppe ...

  8. Automate the Sizing of your SGA in Oracle 10g

    How much memory does each of the individual components of the SGA need? Oracle now has methods to de ...

  9. 【转】ubuntu右键在当前位置打开终端

    ubuntu右键在当前位置打开终端   ubuntu增加右键命令:   在终端中打开   软件中心:   搜索nautilus-open-terminal安装   命令行:   sudo apt-ge ...

  10. zabbix系列之五——安装后配置一

    https://www.zabbix.com/documentation/3.4/manual/appliance Configuration 1Hosts and host groups Overv ...