【agc006f】Blackout(神仙题)

翻译

给定一个\(n*n\)的网格图,有些格子是黑色的。如果\((x,y),(y,z)\)都是黑色的,那么\((y,x)\)也会被染黑,求最终黑格子数量。

题解

网格图我们显然是存不下的,把它转化成图来考虑。于是题目变成了:给定一个\(n\)个点\(m\)条边的图,如果\(x\rightarrow y\),\(y\rightarrow z\)的边都存在,那么连边\(z\rightarrow x\),回答边的数量。

然后开始手动翻译题解。

首先,我们可以计算每一个弱联通块(把边看成无向边的联通块),那么答案显然就是所有弱联通块的答案的总和。我们先假定图是一个弱联通图。

考虑这样一种情况,我们把点依次标号,然后在\(i\)和\(i+1\)之间连边,那么如果\(s\)和\(t\)之间存在边\(s\rightarrow t\),那么当且仅当\(t\equiv s+1(mod\ 3)\)。具有一定启发意义,我们考虑在模\(3\)的意义下搞点事情。我们用\(A,B,C\)给所有点做标记,并且强制要求对于任意一条边,只可能是\(A\rightarrow B\),\(B\rightarrow C\),\(C\rightarrow A\)。这样标号的方式可能不存在,但是不难证明一旦存在合法的标号方案,那么标号的方法唯一(不考虑循环\(ABC\)的顺序)。你可以把整个图给\(dfs\)一遍,这样子可以得到唯一的染色方案,或者证明它不存在。

通过标号的结果,我们可以得到三种情况,给出每种情况下的结论,等下再给出证明。

  • 当标号存在,但是并没有用到所有的三种颜色,那么你无法在这个联通块中进行任何操作。
  • 当标号存在,并且所有的三种颜色都被用到,那么你可以把所有\(AB\)之间连边,\(BC\)之间连边,\(CA\)之间连边,并且只能连这些边。
  • 当标号方案不存在,你可以给任意一对点之间连边,包括自环。

利用结论,可以很容易的计算出答案,时间复杂度\(O(m)\)。代码如下,证明内容(当然是翻译的啊)在代码后面。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAX<<1];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
int n,m;ll ans;
int vis[MAX],f[3],edge,size;bool label;
void dfs(int u,int d)
{
vis[u]=d;f[d]+=1;++size;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(e[i].w==1)++edge;
if(vis[v]==-1)dfs(v,(d+e[i].w)%3);
else if(vis[v]!=(vis[u]+e[i].w)%3)label=false;
}
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int x=read(),y=read();
Add(x,y,1);Add(y,x,2);
}
memset(vis,-1,sizeof(vis));
for(int i=1;i<=n;++i)
if(vis[i]==-1)
{
label=true;f[0]=f[1]=f[2]=0;size=edge=0;dfs(i,0);
if(label)ans+=(!min(f[0],min(f[1],f[2])))?(edge):(1ll*f[0]*f[1]+1ll*f[1]*f[2]+1ll*f[2]*f[0]);
else ans+=1ll*size*size;
}
cout<<ans<<endl;
return 0;
}
  • 当标号存在,但是并没有用到所有的三种颜色,那么你无法在这个联通块中进行任何操作。

    如果存在边\((x,y)\)和\((y,z)\),那么必定意为这所有的三种颜色都会被用到。既然如此,那么意味着这里不存在上述的边,所以你不能连出任何一条新边。

  • 当标号存在,并且所有的三种颜色都被用到,那么你可以把所有\(AB\)之间连边,\(BC\)之间连边,\(CA\)之间连边,并且只能连这些边。

    必定存在若干形如\((x,y),(y,z)\)这样的边,我们不妨令\(x\)染\(A\),\(y\)染\(B\),\(z\)染\(C\)。我们可以看出所有新连的边加上原边会构成一个个三角形。举个例子,令\(v\)存在一条边\((v,x)\),那么必定存在边\((y,v)\),那么我们不难证明任意一个\(v\)一定和\(x,y,z\)三个点中的两个有直接的边相连。所以任意的\(A\)都会连出一条\(A\rightarrow B\),其他的边同理。

  • 当标号方案不存在,你可以给任意一对点之间连边,包括自环。

    我们证明至少会存在一个自环。既然标号方案不存在,那么必定存在一个环导致了矛盾,注意,这个环不一定是有向环。那么这个环至少存在两条边\((x,y)\),\((y,z)\),那么我们可以连上\((z,x)\),那么等价于我们看这个环的时候可以直接跳过\(y\)。既然原先的环会导出矛盾,那么当前这个环照样会导出矛盾,那么我们重复这个过程,就可以得到自环。而其他的边存在的原因和前面两个证明类似,不再重复证明。

【agc006f】Blackout(神仙题)的更多相关文章

  1. [agc006f] Blackout 神题

    Description ​ 给你一个NN行NN列的网格,第ii行第jj列的格子用(i,j)(i,j)表示 一开始的时候有MM个格子被涂成黑色,其他的格子都是白色,具体一点,涂成黑色的格子为(a1,b1 ...

  2. 2017国家集训队作业[agc006f]Blackout

    2017国家集训队作业[agc006f]Blackout 题意: 有一个\(N*N\)的网格,一开始有\(M\)个格子被涂黑,给出这\(M\)个格子,和染色操作:如果有坐标为\((x,y),(y,z) ...

  3. Codeforces & Atcoder神仙题做题记录

    鉴于Codeforces和atcoder上有很多神题,即使发呆了一整节数学课也是肝不出来,所以就记录一下. AGC033B LRUD Game 只要横坐标或者纵坐标超出范围就可以,所以我们只用看其中一 ...

  4. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  5. 【BZOJ5213】[ZJOI2018]迷宫(神仙题)

    [BZOJ5213][ZJOI2018]迷宫(神仙题) 题面 BZOJ 洛谷 题解 首先可以很容易的得到一个\(K\)个点的答案. 构建\(K\)个点分别表示\(mod\ K\)的余数.那么点\(i\ ...

  6. 【BZOJ1071】[SCOI2007]组队(神仙题)

    [BZOJ1071][SCOI2007]组队(神仙题) 题面 BZOJ 洛谷 题解 首先把式子整理一下,也就是\(A*h+B*v\le C+A*minH+B*minV\) 我们正常能够想到的做法是钦定 ...

  7. 【BZOJ3244】【NOI2013】树的计数(神仙题)

    [BZOJ3244][NOI2013]树的计数(神仙题) 题面 BZOJ 这题有点假,\(bzoj\)上如果要交的话请输出\(ans-0.001,ans,ans+0.001\) 题解 数的形态和编号没 ...

  8. 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)

    题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...

  9. P3202 [HNOI2009]通往城堡之路 神仙题

    这个题不是坑人吗...写个tarjan标签,然后拿这么个神仙题来搞...代码有点看不懂,有兴趣的可以去洛谷题解区看看,懒得想了. 题干: 题目描述 听说公主被关押在城堡里,彭大侠下定决心:不管一路上有 ...

随机推荐

  1. 使用request+Beautiful爬取妹子图

    一.request安装 pip install requests request使用示例 import requests response = requests.get('https://www.mz ...

  2. 使用Amplify Shader Editor优化特效Shader

    ASE相对于Shader Forge生成的代码更加干净, 用于制作特效的再合适不过,以下是使用ASE优化一个SF制作特效的经过: ## 分析美术用SF制作的Shader 懒得装SF, 直接分析代码可知 ...

  3. UnityShader学习笔记1 — — 入门知识整理

    注:资料整理自<Unity Shader入门精要>一书 一.渲染流程概念阶段:  应用阶段:(1)准备好场景数据:(如摄像机位置,物体以及光源等)   (2)粗粒度剔除(Culling): ...

  4. Siki_Unity_7-4_高自由度沙盘游戏地图生成_MineCraft_Uniblocks插件(可拓展)

    Unity 7-4 高自由度沙盘游戏地图生成 MineCraft (插件Uniblocks) 任务1&2&3&4 素材 && 课程演示 && 课 ...

  5. Python3列表中获取相同元素出现位置的下标

    前言 list: Python3的列表类型, 和其他语言中的数组类似 定义格式: l = ["a", "b", "c", "a&q ...

  6. Windows ,获取硬盘物理序列号(VC++)

    #include <windows.h> BOOL GetHDID(PCHAR pIDBufer) {     HANDLE hDevice=NULL;    hDevice=::Crea ...

  7. spring-boot+swagger实现WebApi文档

    1.引用依赖包 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-s ...

  8. PHP版本对比【转】

    其他历史http://www.cnblogs.com/yjf512/p/3588466.html php5.3 改动: 1.realpath() 现在是完全与平台无关的. 结果是非法的相对路径比如FI ...

  9. Scrum Meeting 10 -2014.11.16

    开始进入大项目的整合阶段,平时和其他两个小组交流较少,整合难度还是存在的. 在具体整合前,让开发人员添加了些必要的注释,优化代码结构,方便阅读. Member Today’s task Next ta ...

  10. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...