(2018浙江省赛9题)
设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______


解答:
$x+12=6\sqrt{y}+4\sqrt{x-y}$
注意到:$6\sqrt{y}+4\sqrt{x-y}\le\sqrt{(6^2+4^2)(y+x-y)}=\sqrt{52x}$且
$6\sqrt{y}+4\sqrt{x-y}\ge4(\sqrt{y}+\sqrt{x-y})\ge4\sqrt{x}$
故$4\sqrt{x}\le x+12\le\sqrt{52x}$得$x\in[14-2\sqrt{13},14+2\sqrt{13}]$

评:一个不等式只能消灭一个最值,求范围就需要两边两个不等式。

练习:

若实数$x,y$满足$x-4\sqrt{y}=2\sqrt{x-y}$,求$x$的范围____
答案:$x=0\vee 4\le x\le20$

相应的技巧可以看MT【68】

MT【146】一边柯西,一边舍弃的更多相关文章

  1. MT【68】一边柯西一边舍弃

    求$\sqrt{x-5}+\sqrt{24-3x}$的最值. 通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法: 证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x- ...

  2. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  3. MT【124】利用柯西求最值

    已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...

  4. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  5. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  6. tc 146 2 BridgeCrossing(n人过桥问题)

    SRM 146 2 1000BridgeCrossing Problem Statement A well-known riddle goes like this: Four people are c ...

  7. tc 146 2 RectangularGrid(数学推导)

    SRM 146 2 500RectangularGrid Problem Statement Given the width and height of a rectangular grid, ret ...

  8. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

随机推荐

  1. A* 寻路的八个变种

    变种 1 - 束搜索(Beam Search) 在 A* 算法的住循环中,OPEN 集存储可能需要搜索的节点,用来以查找路径. 束搜索是 A* 的变体,它限制了OPEN集的大小. 如果集合变得太大,则 ...

  2. Linux 文件系统 -- 文件权限简介

    一.文件权限 使用 ls -l 命令可以查看文件的具体属性: 如图所示,第一列所示告诉了用户一个文件的类型和权限信息: 1)第一个字符 "d",表明该文件是一个目录文件: 2)r ...

  3. AtCoder | ARC103 | 瞎讲报告

    目录 ARC 103 A.//// B.Robot Arms C.Tr/ee D.Distance Sums ARC 103 窝是传送门QwQ A.//// 题意 : 给你\(n\)(\(n\)为偶数 ...

  4. Acer 4750G安装OS X 10.9 DP4(简版)

    一.下载os x 10.9懒人版:http://bbs.pcbeta.com/viewthread-1384504-1-1.html 二.用系统自带的磁盘分区工具划分一个5G左右的临时安装盘(新建分区 ...

  5. 2017年第八届蓝桥杯【C++省赛B组】

    1.标题: 购物单 小明刚刚找到工作,老板人很好,只是老板夫人很爱购物.老板忙的时候经常让小明帮忙到商场代为购物.小明很厌烦,但又不好推辞. 这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有 ...

  6. Scrum立会报告+燃尽图(Final阶段第一次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2480 项目地址:https://coding.net/u/wuyy694 ...

  7. bing词典vs有道词典对比测试报告——功能篇之细节与用户体验

    之所以将细节与用户体验放在一起讨论,是因为两者是那么的密不可分.所谓“细节决定成败”,在细节上让用户感受方便.舒适.不费心而且温馨,多一些人文理念,多一些情怀,做出来的产品自然比其他呆板的产品更受欢迎 ...

  8. Scrum Meeting 11.05

    成员 今日任务 明日计划 用时 徐越 代码移植 学习ListView+simpleAdapter,actionBar.阅读并修改前端代码 4h 赵庶宏 服务器配置,代码移植  构建后端数据库,进行完善 ...

  9. Alpha阶段展示报告

    一.团队成员简介与个人博客地址 江昊,项目经理 http://www.cnblogs.com/haoj/ 王开,后端开发 http://www.cnblogs.com/wk1216123/ 王春阳,后 ...

  10. [buaa-SE-2017]个人作业-回顾

    个人作业-回顾 提问题的博客:[buaa-SE-2017]个人作业-Week1 Part1: 问题的解答和分析 1.1 问题:根据书中"除了前20的学校之外,计科和软工没有区别"所 ...