题目描述

有一个长度为N的数组,甲乙两人在上面进行这样一个游戏:首先,数组上有一些格子是白的,有一些是黑的。然
后两人轮流进行操作。每次操作选择一个白色的格子,假设它的下标为x。接着,选择一个大小在1~n/x之间的整数
k,然后将下标为x、2x、...、kx的格子都进行颜色翻转。不能操作的人输。现在甲(先手)有一些询问。每次他
会给你一个数组的初始状态,你要求出对于这种初始状态他是否有必胜策略。
 

输入格式

接下来2*K行,每两行表示一次询问。在这两行中,第一行一个正整数W,表示数组中有多少个格子是白色的,第二
行则有W个1~N之间的正整数,表示白色格子的对应下标。

输出格式

对于每个询问,若先手必胜输出"Yes",否则输出"No"。答案之间用换行隔开


数据范围

N<=1000000000 , K,W<=100 , 不会有格子在同
一次询问中多次出现。

  • 题解

    • 可以发现变颜色这类问题是符合分解理论的,求出所有位置的sg值异或得到游戏的sg值;
    • 考虑所有位置的sg值如何求;
    • 可以写出一个$O(n^2)$的暴力(注意终止状态的$sg$为0);
    • 考虑改进暴力,打表发现对于一个$n$的所有$i$,$\frac{n}{i}$相同的位置sg值也相同;
    • 将$n$下底分块,就只需要求出$\sqrt{n}$个块的sg函数;
    • 由于是异或,只需要判断在某个块里的奇偶性就可以知道经过这个块的异或值;
    • 同时sg值由于是$mex$所以没有很大,$i<=sqrt(n)$的直接存,$i>sqrt{n}$的存在$\frac{n}{i}$里面:
    • 时间复杂度:$O(n)$ ?, 空间复杂度:$O(\sqrt{n})$;
 #include<bits/stdc++.h>
using namespace std;
const int N=1e5;
int n,m,u,a[N],b[N],tot,vis[N],q[N];
void pre(){
for(int i=tot,tmp;i;--i){
tmp=;
int x = q[i];
for(int j=x*,lst;j<=n;j=lst+x){
lst=n/(n/j)/x*x;
int t=lst<=u?a[lst]:b[n/lst];
vis[tmp^t]=i;
if(((lst-j)/x+)&)tmp^=t;
}
for(int j=;;++j)if(vis[j]!=i){tmp=j;break;}
if(x<=u)a[x]=tmp;else b[n/x]=tmp;
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("bzoj4035.in","r",stdin);
freopen("bzoj4035.out","w",stdout);
#endif
scanf("%d%d",&n,&m);u=sqrt(n);
for(int i=,lst;i<=n;i=lst+){lst=n/(n/i);q[++tot]=lst;}
pre();
for(int i=,x,tmp;i<=m;++i){
scanf("%d",&x);tmp=;
for(int j=,y;j<=x;++j){
scanf("%d",&y);
y=n/(n/y);
tmp^= y<=u?a[y]:b[n/y];
}
puts(tmp?"Yes":"No");
}
return ;
}

bzoj4035

 #include<bits/stdc++.h>
using namespace std;
const int N=;
int n,vis[N],sg[N];
int main(){
// freopen("exp.in","r",stdin);
freopen("exp.out","w",stdout);
for(n=;n<=;++n){
for(int i=;i<=n;++i)sg[i]=;
for(int i=n;i;--i){
for(int j=;j<=n/i;++j)vis[j]=;
int tmp = ;
for(int j=i+i;j<=n;j+=i){
tmp ^= sg[j];
vis[tmp]=;
}
for(int j=;j<=n/i;j++)if(!vis[j]){sg[i]=j;break;}
}
//for(int i=1;i<=100-n+1;++i)putchar(' ');
//for(int i=1;i<=n;++i)putchar(' ');
for(int i=;i<=n;++i)printf("%d ",sg[i]);
//printf("%d ",sg[n-2]);
//for(int i=3;i<=n;i+=3)printf("%d ",sg[i]);
puts("");
}
/*
int now = 20, cnt=0;
for(int i=now,j;i;i=j,now>>=1){
j = i - ((now + 1)>>1);
for(int k=i;k>j;--k)printf("%d",sg[k]),cnt++;
puts("");
}
cout<<cnt<<endl;
*/
return ;
}

暴力

bzoj4035【HAOI2015】数组游戏的更多相关文章

  1. bzoj4035 [HAOI2015]数组游戏

    这题显然把每个白格子看成一个子游戏 一个白格子$x$的$sg$值是$mex{[0,sg[2x],sg[2x] XOR sg[3x].....]}$ 打表发现一个数的$sg$值只和$n/x$有关,然后分 ...

  2. 【BZOJ4035】数组游戏(博弈论)

    [BZOJ4035]数组游戏(博弈论) 题面 BZOJ 洛谷 题解 很明显是一个翻硬币游戏的变形,因此当前局面的\(SG\)函数值就是所有白格子单独存在的\(SG\)函数的异或和. 那么,对于每一个位 ...

  3. 【BZOJ 4035】 4035: [HAOI2015]数组游戏 (博弈)

    4035: [HAOI2015]数组游戏 Time Limit: 15 Sec  Memory Limit: 32 MBSubmit: 181  Solved: 89 Description 有一个长 ...

  4. @bzoj - 4035@ [HAOI2015]数组游戏

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有一个长度为N的数组,甲乙两人在上面进行这样一个游戏: 首先,数 ...

  5. [HAOI2015]数组游戏

    题目大意: 有一排n个格子,每个格子上都有一个白子或黑子,在上面进行游戏,规则如下: 选择一个含白子的格子x,并选择一个数k,翻转x,2x,...,kx格子上的子. 不能操作者负. 思路: 将“某个格 ...

  6. 【LOJ】#2126. 「HAOI2015」数组游戏

    题解 简单分析一下就知道\(\lfloor \frac{N}{i} \rfloor\)相同的\(i\)的\(sg\)函数相同 所以我们只要算\(\sqrt{n}\)个\(sg\)函数就好 算每一个\( ...

  7. JZYZOJ1540 BZOJ4035 [ haoi2015 上午] T3 博弈论 sg函数 分块 haoi

    http://172.20.6.3/Problem_Show.asp?id=1540 之前莫比乌斯反演也写了一道这种找规律分块计算的题,没觉得这么恶心啊. 具体解释看代码. 翻硬币的具体方法就是分别算 ...

  8. 最浅谈的SG函数

    [更新] Nim游戏的经验: 每次最多取m个——%(m+1) 阶梯nim——奇数位无视,看偶数位互相独立,成一堆一堆的石子 . . . . 既然被征召去汇总算法..那么挑个简单点的SG函数好了.. 介 ...

  9. sg函数小结

    sg函数小结 sg函数是处理博弈问题的重要工具. 我们知道sg(x)=mex{sg(j)|x能到达状态j} sg(x)=0时代表后手赢,否则先手赢. 对于一个问题,如果某些子问题是相互独立的,我们就可 ...

随机推荐

  1. python3 拼接字符串的7种方法

    1.直接通过(+)操作符拼接 1 2 >>> 'Hello' + ' ' + 'World' + '!' 'Hello World!' 使用这种方式进行字符串连接的操作效率低下,因为 ...

  2. 程序设计 之 C#实现《拼图游戏》 (上)代码篇

    原理详解请参考博客中 拼图游戏(下)原理篇 http://www.cnblogs.com/labixiaohei/p/6713761.html 功能描述: 1.用户自定义上传图片 2.游戏难度选择:简 ...

  3. 【quickhybrid】JS端的项目实现

    前言 API实现阶段之JS端的实现,重点描述这个项目的JS端都有些什么内容,是如何实现的. 不同于一般混合框架的只包含JSBridge部分的前端实现,本框架的前端实现包括JSBridge部分.多平台支 ...

  4. PyCharm配置SFTP远程调试Django应用

    http://www.ithao123.cn/content-41747.html http://www.th7.cn/system/lin/201703/205998.shtml

  5. 2017秋-软件工程第十二次作业(一)-PSP总结

    [回顾]:回顾开学时的博客并回答相关问题 1.回想一下你曾经对计算机专业的畅想当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么?答:当初的决定是以前的事情,没有改变.经历 ...

  6. Daily Scrum (2015/11/3)

    今天我们的爬虫能在pc上成功运行并且把所爬取的数据存到服务器上了!我们已经搭建好数据库,把相关信息存到数据库中,并把数据存到D盘里共享给数据处理小组使用. 成员 今日工作 时间 明日工作 符美潇 完成 ...

  7. Linux基础入门--04

    目录结构及文件基本操作 实验介绍: 1.Linux 的文件组织目录结构. 2.相对路径和绝对路径. 3.对文件的移动.复制.重命名.编辑等操作. 一.Linux 目录结构 在讲 Linux 目录结构之 ...

  8. windows和RedHat双系统安装说明

    该博客记录了安装windows和RedHat双系统的方法.这里的windows系统是win8.1,RedHat是RHEL-server-7.0-x86_64-LinuxProbe.Com.iso,该i ...

  9. 先做一个用来测试的chrome浏览器插件

    如何制作chrome插件 在项目汇报中,有同学提到了想要了解如何制作插件,特写该篇博客供大家查阅~ 一个简单的插件需要manifest.json.popup.html.popup.js.content ...

  10. ThinkPhp输入参数过滤

    I('id',0); // 获取id参数 自动判断get或者post,不存在时返回默认值0 I('post.name','','htmlspecialchars'); //获取$_POST['name ...