差分约束系统 + spfa(A - Layout POJ - 3169)
题目链接:https://cn.vjudge.net/contest/276233#problem/A
差分约束系统,假设当前有三个不等式
x- y <=t1
y-z<=t2
x-z<=t3
我们可以将第一个式子和第二个式子结合起来,就变成了x-z<= t1+t2 ,然后x-z的最大差值就是min(t1+t2,t3)(因为要使得最终结果都满足两个不等式)
然后求最小的过程(求差最大),就可以通过最短路的算法实现。
题目大意:给你n代表有n头牛,然后ml和md,接下来ml行,每行有三个数u v w代表u和v之间的距离最多是w,接下来md行,每行有三个数,代表u v 之间的距离最少是w,然后问你第一个牛和第n个牛最远可以相差多少,如果是无穷远输出-2.如果没有满足的情况,输出-1,否则输出dis【n】。
具体思路:我们可以将题目条件转换为不等式进行求解,对于第一种情况,也就是ml的时候,我们可以转成如下式子
posU-posV < = w。然后我们就可以连一条边,u->v (权值是w),对于第二种情况,我们转化的式子是posU-posV>=w,我们需要将这个式子转换成和第一种形式相同的,所以两边同乘-1,就变成了posV-posU<=-w,然后就是建边就可以了。
AC代码:
#include<iostream>
#include<cstring>
#include<stack>
#include<iomanip>
#include<cmath>
#include<queue>
#include<algorithm>
#include<stdio.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = 1e6+;
int n,ml,md;
int num,head[maxn],dis[maxn],out[maxn],vis[maxn];
struct node
{
int fr;
int to;
int cost;
int nex;
} edge[maxn];
void init()
{
num=;
memset(head,-,sizeof(head));
}
void addedge(int fr,int to,int cost)
{
edge[num].to=to;
edge[num].cost=cost;
edge[num].nex=head[fr];
head[fr]=num++;
}
int spfa()
{
queue<int>q;
q.push();
memset(dis,inf,sizeof(dis));
dis[]=;
vis[]=;
out[]++;
while(!q.empty())
{
int tmp=q.front();
out[tmp]++;
if(out[tmp]>n)//判断会不会成负环
return -;
q.pop();
vis[tmp]=;
for(int i=head[tmp]; i!=-; i=edge[i].nex)
{
int u=edge[i].to;
if(dis[u]>dis[tmp]+edge[i].cost)
{
dis[u]=dis[tmp]+edge[i].cost;
if(vis[u])
continue;
q.push(u);
vis[u]=;
}
}
}
if(dis[n]==inf)
return -;
return dis[n];
}
int main()
{
init();
scanf("%d %d %d",&n,&ml,&md);
int u,v,w;
for(int i=; i<=ml; i++)
{
scanf("%d %d %d",&u,&v,&w);
addedge(u,v,w);
}
for(int i=; i<=md; i++)
{
scanf("%d %d %d",&u,&v,&w);
addedge(v,u,-w);
}
int ans=spfa();
printf("%d\n",ans);
return ;
}
差分约束系统 + spfa(A - Layout POJ - 3169)的更多相关文章
- 【差分约束系统/SPFA】POJ3169-Layout
[题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...
- BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA
最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...
- ShortestPath:Layout(POJ 3169)(差分约束的应用)
布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...
- spfa+floyed+最长路+差分约束系统(F - XYZZY POJ - 1932)(题目起这么长感觉有点慌--)
题目链接:https://cn.vjudge.net/contest/276233#problem/F 题目大意:给你n个房子能到达的地方,然后每进入一个房子,会消耗一定的生命值(有可能是负),问你一 ...
- Layout POJ - 3169
题目链接:https://vjudge.net/problem/POJ-3169 题意:有一些奶牛,有些奶牛相互喜欢,他们之间的距离必须小于等于一个K. 有些奶牛相互讨厌,他们之间的距离必须大于等于一 ...
- 差分约束系统+spfa(B - World Exhibition HDU - 3592 )
题目链接:https://cn.vjudge.net/contest/276233#problem/B 思路和上一个一样,不过注意点有两个,第一,对dis数组进行初始化的时候,应该初始化成ox3f3f ...
- PKU 1201 Intervals(差分约束系统+Spfa)
题目大意:原题链接 构造一个集合,这个集合内的数字满足所给的n个条件,每个条件都是指在区间[a,b]内至少有c个数在集合内.问集合最少包含多少个点.即求至少有多少个元素在区间[a,b]内. 解题思路: ...
- ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)
当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
随机推荐
- 如何在数据表中存取图片 - 回复 "三足乌" 的问题
问题来源: http://www.cnblogs.com/del/archive/2009/05/28/1491186.html#1801853 准备工作:1.在空白窗体上添加: ClientData ...
- SGU438_The Glorious Karlutka River =)
好题,有一些人在河的一边,想通过河里的某些点跳到对岸去.每个点最多只能承受一定数量的人,每人跳跃一次需要消耗一个时间.求所有人都过河的最短时间. 看网上说是用了什么动态流的神奇东东.其实就是最大流吧, ...
- 对HashMap的理解(一):HashMap的实现
一.HashMap介绍 1. 定义HashMap实现了Map接口,继承AbstractMap类.其中Map接口定义了键映射到值的规则,而AbstractMap类提供 Map 接口的骨干实现,以最大限度 ...
- 基于c的简易计算器一
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <malloc.h&g ...
- Mininet 系列实验(七)
实验内容 本实验在基于 Mininet 脚本的不同拓扑环境下使用 OpenDaylight 控制交换机行为.任务一:一台交换机两台主机,从1端口进入的数据流转发到 2 端口,从 2 端口进入的数据流转 ...
- GridView中网络图片延迟加载导致高度计算失败的问题
在使用下拉刷新以及加载更多控件的时候,出现了列表上滚不完的现象,经过半天的分析,最后得出结论:由于图片采用了延迟加载,导致列表按照没有加载图片时候的大小进行布局,相关的加载更多控件也就傻逼了. 最终解 ...
- [Codeforces Gym] 100162B Circle of Stones
题意: 桌子上有 n 个石头围成一个环.每个石头都有一种颜色.每种颜色可以由小写英文字母表示.如果每一对相邻的石头都是不同颜色的,则称这 n 个石头构成的环是美丽的.现在,你可以从这 n 个石头中拿走 ...
- 【纪中集训2019.3.11】Cubelia
题目: 描述 给出长度为\(n\)的数组\(a\)和\(q\)个询问\(l,r\). 求区间\([l,r]\)的所有子区间的前缀和的最大值之和: 范围: $n \le 2 \times 10^5 , ...
- 浏览器json数据格式化
在浏览器上作接口测试的时候看到json 格式的数据是密密麻麻的一片,眼睛都花了.. 如: 设置方法: chrome 的右上角选择,然后--- 更多工具--- 扩展程序 ---- JSO ...
- 3.CentOS的一些小笔记
1.一般来说,主文件夹都在/home下面,比如登陆的账户为LyndonMario,则我的主文件夹为 /home/LyndonMario. 2.ctrl+space可以调出输入法. 3.CentOS中的 ...