1. 概念

参考:Linux-CAN编程详解

can引脚: cn2: 15:CAN1_H 19 CAN1_L

根据每组报文开头的 11 位标识符(扩展帧为29位标识符、CAN 2.0A 规范)解释数据的含义来决定是否接收。

CAN状态:

准备状态:
这个节点的处理器将要发送的数据和自己的标识符传送给该节点的 CAN 总线接口控制器

报文状态:
当收到总 线分配时,转为发送报文状态。

接收状态:
数据根据协议组织成一定的报文格式后发出,此时网络上的其他节点处于接收状态。处于接收状态的每个节点对接
收到的报文进行检测,判断这些报文是否是发给自己的以确定是否接收。

层次结构:
对象层:在对象层中可以为远程数据请求以及数据传输提供服务,确定由实际要使用的传输层接收哪一个报文,并且
为恢复管理和过载通知提供手段。
传输层:传输层负责位的定时及同步、报文分帧、仲裁、应答、错误检测和标定、故障界定。
物理层:波特率之类的

报文结构:
数据帧:发送数据
远程帧:请求数据
错误帧:检测到错误则发出
过载帧:提供帧与帧之间的延时

ip link set can0 type can bitrate 125000

流程:

1. 创建socket
2. bind将socket绑定can
3. 设置选项setsockopt
4. read/write

常用命令:

在控制台上输入命令:
ifconfig –a
可以得到以下结果:

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope: Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 TX bytes:0
eth0 Link encap:Ethernet HWaddr F6:88:05:8F:72:8C
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 TX bytes:0
can0 Link encap:UNSPEC
UP RUNNING NOARP MTU:16 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10
RX bytes:0 TX bytes:2
Interrupt:32

令来配置 CAN 总线的位速率:

ip link set can0 type cantq  prop-seg 6phase-seg1  phase-seg2  sjw 

也可以使用 ip 命令直接设定位速率:

ip link set can0 type can bitrate 

当设置完成后,可以通过下面的命令查询 can0 设备的参数设置:

ip -details link show can0

当设置完成后,可以使用下面的命令使能 can0 设备:

ifconfig can0 up

使用下面的命令取消 can0 设备使能:

ifconfig can0 down

在设备工作中,可以使用下面的命令来查询工作状态:

ip -details -statistics link show can0

2. 测试流程:

1. 启动Linux的can0,并初始化

ifconfig can0 down   //要修改can的参数,必须先down
ip link set can0 type can bitrate
ifconfig can0 up

2. 测试代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/can.h>
#include <linux/can/raw.h> int main()
{
int fd, nbytes;
struct sockaddr_can addr;
struct ifreq ifr;
int ret; //1. 初始化
struct can_frame frame[] = {{}};
fd = socket(PF_CAN, SOCK_RAW, CAN_RAW);//创建套接字 printf("version=6;fd=%d\n", fd); strcpy(ifr.ifr_name, "can0" );
ioctl(fd, SIOCGIFINDEX, &ifr); //指定 can0 设备
addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;
ret = bind(fd, (struct sockaddr *)&addr, sizeof(addr));//将套接字与 can0 绑定
printf("ret=%d\n", ret); //禁用过滤规则,本进程不接收报文,只负责发送
setsockopt(fd, SOL_CAN_RAW, CAN_RAW_FILTER, NULL, );
//报文1:数据帧:标准帧、ID=0x11;
frame[].can_id = 0x11;
frame[]. can_dlc = ;
frame[].data[] = 0x12; //报文2:数据帧:扩展帧、ID=0x22
frame[].can_id = 0x22 | CAN_EFF_FLAG;
frame[]. can_dlc = ;
frame[].data[] = 0x34; //报文3:远程帧:ID=0x33;
frame[].can_id = 0x33 | CAN_RTR_FLAG; //报文4:错误帧:ID=0x44;
frame[].can_id = 0x44 | CAN_ERR_FLAG; //循环发送两个报文
//while(1)
{
nbytes = write(fd, &frame[], sizeof(frame[])); //发送 frame[0]
if(nbytes != sizeof(frame[]))
{
printf("Send Error frame[0]\n!");
//break; //发送错误,退出
}else{
printf("Send Sucess frame[0]\n!");
}
//usleep(10000);
sleep();
nbytes = write(fd, &frame[], sizeof(frame[])); //发送 frame[1]
if(nbytes != sizeof(frame[]))
{
printf("Send Error frame[1]\n!");
//break;
}else{
printf("Send Sucess frame[1]\n!");
}
//usleep(10000);
sleep();
nbytes = write(fd, &frame[], sizeof(frame[])); //发送 frame[1]
if(nbytes != sizeof(frame[]))
{
printf("Send Error frame[2]\n!");
//break;
}else{
printf("Send Sucess frame[21]\n!");
}
//usleep(10000);
sleep();
nbytes = write(fd, &frame[], sizeof(frame[])); //发送 frame[1]
if(nbytes != sizeof(frame[]))
{
printf("Send Error frame[3]\n!");
//break;
}else{
printf("Send Sucess frame[3]\n!");
}
//usleep(10000);
sleep();
} close(fd);
return ;
}

3. 现象

android上现象:

Windows上现象:

波形现象:(注:因为上面的发送太少,抓不到数据,所以下面的是我更换了其他代码查看的)

CPU出来的CAN信号,是标准信号

进过转换过后的,很难查看出来,但是就是这个差分信号

can/socket can的更多相关文章

  1. socket读写返回值的处理

    在调用socket读写函数read(),write()时,都会有返回值.如果没有正确处理返回值,就可能引入一些问题 总结了以下几点 1当read()或者write()函数返回值大于0时,表示实际从缓冲 ...

  2. Socket聊天程序——Common

    写在前面: 上一篇记录了Socket聊天程序的客户端设计,为了记录的完整性,这里还是将Socket聊天的最后一个模块--Common模块记录一下.Common的设计如下: 功能说明: Common模块 ...

  3. Socket聊天程序——客户端

    写在前面: 上周末抽点时间把自己写的一个简单Socket聊天程序的初始设计和服务端细化设计记录了一下,周二终于等来毕业前考的软考证书,然后接下来就是在加班的日子度过了,今天正好周五,打算把客户端的详细 ...

  4. Socket聊天程序——服务端

    写在前面: 昨天在博客记录自己抽空写的一个Socket聊天程序的初始设计,那是这个程序的整体设计,为了完整性,今天把服务端的设计细化记录一下,首页贴出Socket聊天程序的服务端大体设计图,如下图: ...

  5. Socket聊天程序——初始设计

    写在前面: 可能是临近期末了,各种课程设计接踵而来,最近在csdn上看到2个一样问答(问题A,问题B),那就是编写一个基于socket的聊天程序,正好最近刚用socket做了一些事,出于兴趣,自己抽了 ...

  6. Java中的Socket的用法

                                   Java中的Socket的用法 Java中的Socket分为普通的Socket和NioSocket. 普通Socket的用法 Java中的 ...

  7. Android Socket连接PC出错问题及解决

    最近测试问题:Android 通过Socket链接电脑,ip和端口都是正确的,也在同一网段,可android端就是报异常如下: 解决办法:测试电脑的防火墙可能开着,在控制面板把防火墙打开即可.

  8. Linux下的C Socket编程 -- server端的继续研究

    Linux下的C Socket编程(四) 延长server的生命周期 在前面的一个个例子中,server在处理完一个连接后便会立即结束掉自己,然而这种server并不科学啊,server应该是能够一直 ...

  9. Mono 3.2.3 Socket功能迎来一稳定的版本

    由于兴趣自己业余时间一直在搞.net下面的通讯应用,mono的存在得以让.NET程序轻松运行在Linux之下.不过经过多尝试Socket相关功能在Mono下的表现并不理想.不管性能还是吞吐能力方面离我 ...

  10. Demo源码放送:打通B/S与C/S !让HTML5 WebSocket与.NET Socket公用同一个服务端!

    随着HTML5 WebSocket技术的日益成熟与普及,我们可以借助WebSocket来更加方便地打通BS与CS -- 因为B/S中的WebSocket可以直接连接到C/S的服务端,并进行双向通信.如 ...

随机推荐

  1. BitAdminCore框架更新日志20180531

    索引 NET Core应用框架之BitAdminCore框架应用篇系列 框架演示:http://bit.bitdao.cn 框架源码:https://github.com/chenyinxin/coo ...

  2. js图片自适应尺寸居中函数处理

    /* | autoSerializePicture.js 自适应格式化图片 | auther : baichaohua/2017-09-21 +---------------------------- ...

  3. CentOS更改ssh端口

    https://blog.csdn.net/lukaixiao/article/details/74852375  来源处处. 注意!这里的Centos版本是7 step1 修改SELinux ech ...

  4. flask之flask_sqlalchemy

    一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL ...

  5. Retrofit源码解析(上)

    简介Retrofit是Square公司开发的一款针对Android网络请求的框架,官网地址http://square.github.io/retrofit/ ,在官网上有这样的一句话介绍retrofi ...

  6. 如何查看linux服务器的版本和配置信息

    linux下看配置,可没有windows那么直观.你只能一个一个查看. 一:cpu[root@srv /]# more /proc/cpuinfo | grep "modelname&quo ...

  7. WWDC: Thread Sanitizer and Static Analysis

    Thread Sanitizer 过程 编译过程中链接了一个新的库.  也可以通过命令行来操作: $ clang -fsanitize=thread source.c -o executable $ ...

  8. 指定nginx某个目录显示目录结构

    1.修改配置文件/usr/local/nginx/conf/nginx.conf 指定目录,开启autoindex为on. location /study { autoindex on; } 2. 保 ...

  9. 彻底弄懂css3的flex弹性盒模型

    由于在日常工作中使用css或者bootstrap的栅格系统已经能很好的满足业务需求,所以一直以来对css3的弹性布局不是很感冒. 近日有幸在一篇文章中领略了flex的魅力--简洁优雅.随试之. /*容 ...

  10. OS之进程管理---实时CPU调度

    引言 一般来说,我们将实时操作系统区分为软实时系统(soft real-time system)和硬实时系统(hard real-time system).软实时系统不保证会调度关键实时进程,而只保证 ...