Codeforces.739E.Gosha is hunting(DP 带权二分)
\(Description\)
有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知。求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望。
\(n\leq10^5\)。
\(Solution\)
设\(f[i][a][b]\)表示前\(i\)只用了\(a\)个低级球,\(b\)个高级球的最大期望。转移时四种情况显然。复杂度\(\mathcal O(nAB)\)。
随着某种球可使用数的增多,f应是凸函数,即增长越来越慢。而且两种球都满足这个性质。
于是可以wqs二分套wqs二分了。。
没有个数限制的话,取个\(\max\),记一下个数就可以了。复杂度\(\mathcal O(nlog^2n)\)。
误差\(\leq 10^{-4}\),因为最后要\(*A/B\),所以\(eps\)应是\(10^{-8}\)...?
最后必须取\(r\)感觉不太懂。。
[Update] 19.2.11
二分的时候只要保证恰好取到\(k\)个就可以了,斜率具体是多少无所谓。而本题\(r\)才是正确的位置...
应该是这么理解吧...
总结:对于有着次数/段数之类的限制,可以使用带权二分来消掉这一限制,从而可以进行简单的快速DP。
//46ms 0KB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define eps (1e-12)
const int N=2003;
int n,A,B,na[N],nb[N];
double pa[N],pb[N],Ans;
void Solve(double ca,double cb)
{
na[0]=nb[0]=0;
double las=0, now;
for(int i=1; i<=n; ++i, las=now)
{
now=las, na[i]=na[i-1], nb[i]=nb[i-1];
if(las+pa[i]-ca>now) now=las+pa[i]-ca, na[i]=na[i-1]+1;
if(las+pb[i]-cb>now) now=las+pb[i]-cb, nb[i]=nb[i-1]+1, na[i]=na[i-1];
if(las+pa[i]+pb[i]-pa[i]*pb[i]-ca-cb>now)//1-(1-pa)(1-pb)
now=las+pa[i]+pb[i]-pa[i]*pb[i]-ca-cb, na[i]=na[i-1]+1, nb[i]=nb[i-1]+1;
}
Ans=now;
}
int main()
{
scanf("%d%d%d",&n,&A,&B);
for(int i=1; i<=n; ++i) scanf("%lf",&pa[i]);
for(int i=1; i<=n; ++i) scanf("%lf",&pb[i]);
double l1=0,r1=1,mid1,l2,r2,mid2;//每个球0/1的权值就可以了啊
while(r1>=l1+eps)
{
mid1=(l1+r1)*0.5;
l2=0, r2=1;
while(r2>=l2+eps)
{
if(Solve(mid1,mid2=(l2+r2)*0.5),nb[n]>B) l2=mid2;
else r2=mid2;
}
if(Solve(mid1,r2),na[n]>A) l1=mid1;//最优可行的是r2?反正不是l2。。
else r1=mid1;
}
Solve(r1,r2);//最后Check一遍r。。
printf("%.5lf",Ans+A*r1+B*r2);
return 0;
}
Codeforces.739E.Gosha is hunting(DP 带权二分)的更多相关文章
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
- 6.13校内互测 (DP 带权二分 斜率优化)
丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...
- codeforces 739E - Gosha is hunting
这道题有三种做法,感受一下: 感觉到了歪果仁费尽脑汁想出来的神仙贪心脑洞题被中国人套路算法踩爆的凄凉...(我的名字是不是暴露了我的真实实力) ============================ ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- CF 739E Gosha is Hunting
有 $n$ 个 Pokemon,你有 $A$ 个一类精灵球,$B$ 个二类精灵球 分别给出每个 Pokemon 被这两类精灵球捕捉的概率 求抓到 Pokemon 的最优期望个数 $n\leq 2000 ...
- P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分
$ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分
BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分 Description 要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门 ...
随机推荐
- MVC中检测到有潜在危险的 Request.Form 值
在做mvc项目时,当使用xhedit or.ueditor编辑器时,点击提交时,编辑器中的内容会带有html标签提交给服务器,这时就是会报错,出现如下内容: “/”应用程序中的服务器错误. 从客户端( ...
- awk的常用内置函数的使用【转】
手把手教你在linux下熟悉使用awk的指令结构 (15) 大家好,今天和大家说一下awk吧.反正正则 早晚也要和大家说,不如一点一点和大家先交代清楚了,省得以后和大家说的时候,大家有懵的感觉... ...
- OpenJ_POJ 1058 Guideposts
Problem OpenJ_POJ Solution 如果我们用 \(G\) 来表示邻接矩阵,那么答案其实就是求\(\sum_{k|i}^n \binom n i G^i\) 为了消除整除的限制,我们 ...
- Python-Web框架的本质
Web框架的本质 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端. 这样我们就可以自己实现Web框架了. Python中使用socket和 ...
- idea开发工具下载安装教程
我用这款工具主要用于java开发 在安装这个工具之前需要配置java的环境 java的jdk环境配置 jdk:1.8 jdk官网下载链接 --->点我 进入之后,下拉 选择 jdk1.8版本 ...
- Mac下破解intellij IDEA 2018
一.在进入下面网站下载破解补丁 http://idea.lanyus.com/ 二.在“应用程序”中找到已经安装的IntelliJ IDEA,在app上右键,选择“显示包内容”,如下图: 将下载的破解 ...
- ASP防XSS代码
原作是在GitHub上,基于Node.js所写.但是..ASP的JS引擎跟V8又有些不同..于是,嗯.. <% Function AntiXSS_VbsTrim(s) AntiXSS_VbsTr ...
- 本地删除文件,git远程不同步删除
git add -a 或 git add * 它能stages所有文件,包括之前删除的痕迹 git add . 只能stages新文件和被修改的文件,不会stages已被删除的文件 步骤如下: 1) ...
- Ubuntu 16.04 使用docker资料汇总与应用docker安装caffe并使用Classifier(ros kinetic+usb_cam+caffe)
Docker是开源的应用容器引擎.若想简单了解一下,可以参考百度百科词条Docker.好像只支持64位系统. Docker官网:https://www.docker.com/ Docker - 从入门 ...
- AARRR:数据运营模型
一.基础知识 产品经理 <增长黑客>数据分析基础 -- 获取(Acquisition)-- 激活(Activation)-- 留存(Retention)-- 收入(Revenue)-- ...