题面在这里!

这种题只能二分答案把qwwq,直接做根本做不了啊。。。

首先你需要知道如何通过 一个区间<=x的数有多少个 来判断x和这个区间中位数的关系。

很显然当数有至少 [L/2]+1 个(L是区间内数的个数)时,x>=该区间的中位数。

你肯定觉得这多简单啊?有啥子用?

第一,它可以转化成,区间内<=x的数比剩下的数多的时候,x>=该区间的中位数,于是就可以做二分里面套的部分。

具体的来说,就是我们二分到一个x的时候,希望知道有多少个区间的中位数<=x。

这个时候只需要把<=x的数设置成1,其他的设置成-1,然后算一算有多少区间的数的和是正数,这显然就是一个离散化+树状数组的傻逼问题。

第二,它还可以用来作最外层的二分判断,调整二分的上下界。

这个比较好想,我就不说了2333。

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
const int N=1e5+5; int n,m,f[N],ans,a[N],mid,b[N],c[N],ky;
ll num; inline void update(int x,int y){ for(;x<=ky;x+=x&-x) f[x]+=y;}
inline int query(int x){ int an=0; for(;x;x-=x&-x) an+=f[x]; return an;} inline ll calc(){
ll an=0;
b[0]=0,memset(f,0,sizeof(f));
for(int i=1;i<=n;i++) b[i]=b[i-1]+(a[i]<=mid?1:-1),c[i]=b[i];
c[ky=n+1]=0,sort(c+1,c+ky+1),ky=unique(c+1,c+ky+1)-c-1;
for(int i=0;i<=n;i++) b[i]=lower_bound(c+1,c+ky+1,b[i])-c; update(b[0],1);
for(int i=1;i<=n;i++) an+=(ll)query(b[i]-1),update(b[i],1); return an;
} inline void solve(){
int L=1,R=1e9;
while(L<=R){
mid=L+R>>1;
if(calc()>=num) ans=mid,R=mid-1;
else L=mid+1;
}
} int main(){
scanf("%d",&n),num=n*(ll)(n+1)>>1,num=(num>>1)+1;
for(int i=1;i<=n;i++) scanf("%d",a+i); solve(); printf("%d\n",ans);
return 0;
}

  

ARC 101 D - Median of Medians的更多相关文章

  1. AtCoder Regular Contest 101 D - Median of Medians

    二分答案 然后前缀和+树状数组来判断这个答案是否大于等于数 如果我们对于一个查询,如果小于这个数令为1,大于这个数领为-1 将所有前缀和放在树状数组中,就可以查询所有sum_{l} < sum_ ...

  2. AtCoder - 4351 Median of Medians(二分+线段树求顺序对)

    D - Median of Medians Time limit : 2sec / Memory limit : 1024MB Score : 700 pointsProblem Statement ...

  3. AtCoder Regular Contest 101 (ARC101) D - Median of Medians 二分答案 树状数组

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARC101D.html 题目传送门 - ARC101D 题意 给定一个序列 A . 定义一个序列 A 的中位数为 ...

  4. 【AtCoder】 ARC 101

    link 搬来了曾经的题解 C-Candles 题意:数轴上有一些点,从原点开始移动到达这些点中的任意\(K\)个所需要的最短总路程 \(K\)个点必然是一个区间,枚举最左边的就行了 #include ...

  5. [AtCoder ARC101D/ABC107D] Median of Medians

    题目链接 题意:给n个数,求出所有子区间的中位数,组成另外一个序列,求出它的中位数 这里的中位数的定义是:将当前区间排序后,设区间长度为m,则中位数为第m/2+1个数 做法:二分+前缀和+树状数组维护 ...

  6. ARC 101 C - Candles

    题面在这里! 显然直接枚举左端点(右端点)就OK啦. #include<cstdio> #include<cstdlib> #include<algorithm> ...

  7. AtCoder4351 Median of Medians 二分, 树状数组

    题目大意 定义一个从小到大的数列的中位数为第 $ \frac{n}{2}+1 $ 项.求一个序列的所有连续子序列的中位数的中位数. $ (n \leqslant 100000)$ 问题分析 由于\(n ...

  8. [ARC101B]Median of Medians

    题目   点这里看题目. 分析   看到中位数,当然会想到二分答案.   考虑检查答案.自然,我们需要找出中位数小于二分值\(k\)的区间的个数.考虑构造一个\(b\): \[b_i=(-1)^{[a ...

  9. CodeForces 1098E. Fedya the Potter

    题目简述:给定长度为$n \leq 5\times 10^4$的序列$a_1, a_2, \dots, a_n \leq 10^5$.将$\gcd(a_l, a_{l+1}, \dots, a_r) ...

随机推荐

  1. httpd.conf详解,因为php始终报fileinfo扩展无法加载的错

    # # This is the main Apache HTTP server configuration file. It contains the # configuration directiv ...

  2. Ubuntu 12.04 更新源的方法及地址

    本文章转自:http://www.maybe520.net/blog/424/ 安装好ubuntu 12.04之后,可以联网之后,马上要做的最重要的事情之一就是配置更新源列表,这样以后安装更新或者软件 ...

  3. Html 使用技巧 -- 设置display属性可以使div隐藏后释放占用的页面空间

         div的visibility可以控制div的显示和隐藏,但是隐藏后页面显示空白: style="visibility: none;" document.getElemen ...

  4. C++ Primer 5th 第18章 用于大型程序的工具

    C++大规模程序设计至少存在三个特殊要求: 错误处理 库的引入 复杂建模 以上三种对应C++语言的三种特性:异常处理.命名空间.多重继承. 异常处理 异常处理机制是一种允许偷懒的工具,在出现非正确的情 ...

  5. 触发器Demo

    --mysql 触发器简单实例 --创建表1 )) ; --创建表2 )); --创建触发器,表一增加数据时,表二自动增加数据 create trigger t_afterinsert_on_tab1 ...

  6. perl6 Net::HTTP 不能发送https请求

    如下命安装必要的包: sudo apt install libssl1.0.0 libssl-dev zef install IO::Socket::SSL zef install Net::HTTP

  7. JDk1.8源码StringBuffer

    一.概念 StringBuffer A thread-safe, mutable sequence of characters. A string buffer is like a {@link St ...

  8. Linux硬盘镜像获取与还原(dd、AccessData FTK Imager)

    1.硬盘镜像获取工具:dd dd是Linux/UNIX 下的一个非常有用的命令,作用是用指定大小的块拷贝一个文件,并在拷贝的同时进行指定的转换. 1.1 本地取数据 查看磁盘及分区 # fdisk - ...

  9. python基础之命名空间

    前言 命名空间通俗的理解就是对象或变量的作用范围,在python中分为局部命令空间.模块命名空间和build-in全局命名空间. 局部命名空间 局部命名空间即在一个函数或一个类中起作用的变量或引用的字 ...

  10. grpc 实现微服务生态笔记

    微服务的发展可谓是一波三折,一代一代经历和N多技术成果,grpc只是其中一个,因为其东家是google,明显比较稳定.加上其强大的文档和技术支持和跨平台的支持,在企业级应用上有很大的可信任感,所以也有 ...