N!(N的阶乘)最末位非0的求解方法
问题是求关于N!的最后一位非0位, 如3!=6,最后一位非0位为6, 5!=120, 最后一位非0位为2.怎么样快速的求出最后一位非0位呢?
最朴素的想法就是先求出N!的结果,再求出结果的最后一位非0位.当N比较小时,是可以承受的,但是当N达到一定规模的时候,时间,空间都不会太理想.这里需要一些技巧.既然是求最后一位非0位,我们就可以先除去所有对结果没有影响的数,如10的倍数.于是先把N!因子分解得到形如2^a*5^b*c.这个时候我们去掉一个b个5因子和b个2因子,最后一位非0位是不变的.(N!中2的因子一定不会比5的因子少).
于是我们的要求的结果就变为(2^(a-b)*c)%10.由(a*b)%10=((a%10)*(b%10))%10我们可以得((2^(a-b)%10)*(c%10))%10,由于c不会产生未位为0,故只保留c的最未位即可.于是可将c转化为1,3,7,9因子的相乘得到的结果的最未位(因为1,3,7,9因子相乘不会产生最未非0位,故去掉高位不会对结果产生影响,同时1*n=n可以去掉1的因子).
2,3,7,9因子规律如下:
2^1=2, 2^2=4, 2^3=8, 2^4=16->(6), 2^5=32->(2)
3^0=1, 3^1=3, 3^2=9, 3^3=27->(7), 3^4=81->(1)
7^0=1, 7^1=7, 7^2=49->(9), 7^3=343->(3), 7^4=2401->(1)
9^0=1, 9^1=9, 9^2=81->(1), 9^3=729->(9), 9^4=6561->(1)
它们都是以4为循环周期的.于是我们只要求出2, 5, 3, 7, 9因子的个数即可.
首先我们求2,5因子在N!中的个数.2的因子的每个偶数到少有1个,同时将数列中每个数/2,其中的偶数还有一个2因子.直至n=1或n=0结束.5因子求法相同.代码如下:
int getFactor_2_5(int n, int f){
int ret=0;
while(n>0){
ret+=n/f;
n/=f;
}
return ret;
}
3,7,9因子的个数有多少呢?对于1,2,3,4......n-1,n来说,未尾以3,7,9结束的数的个数为
n/10+(n%10³f?1:0),(f=3,7, 9).
同时我们对于对于奇数数列/5可以得到一个新的数列也有3,7,9因子,对于偶数数列/2也可以得到新的数列也有3,7,9的因子,将所有的3,7,9因子相加即可得到总的3,7,9因子的个数.得到3,7,9因子的个数后,我们可以将其全部转化为因子3的个数.因为9=3*3(3^2), 7=(3*3*3(3^3))%10,设f3, f7, f9为3, 7, 9因子的个数,全部转化为因子3的个数为f3+2*f9+3*f7.
于是我们可以用递归同时求2,3,5,7,9因子的个数,代码如下:
void getFactor(int n){
if(n==0)
return;
for(int m=n; m>0; m/=5){
int t=m/10, r=m%10;
f3+=t+(r>=3);
f5+=t+(r>=5);
f7+=t+(r>=7);
f9+=t+(r>=9);
}
f2+=n/2;
getFactor(n/2);
}
可用两个数组表示循环:
- int p2[4]={6, 2, 4, 8};
- int p3[4]={1, 3, 9, 7};
故结果为(1):当2, 5因子个数相同时,只与3因子相关,结果为p3[f3%4]%10;
(2):当2因子大于5因子时,结果同时与3因子和2因子相关,为(p2[f2%4]*p3[f3%4])%10.
其实通过N!的最未非0位的方法我们可以求排列组合数NPM,C(N,M)的最未非0位,用上面的各因子个数减去下面的各因子个数就是结果的各因子个数.只是此时需要注意的是5的因子可能会比2的因子多.当5的因子比2的因子多时,未位一定为5.其余情况与上面相同.
N!(N的阶乘)最末位非0的求解方法的更多相关文章
- 计算阶乘n!末尾0的个数
一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...
- N阶乘尾部的0个数
N阶乘尾部的0个数 描述 设计一个算法,计算出n阶乘中尾部零的个数 思路: 1.1 * 2 * 3 * ... * n --> 1 * 2 * 3 * (2 * 2) * 5 * (2 * 3) ...
- NYOJ1026 阶乘末尾非0 【模板】
阶乘末尾非0 时间限制:2000 ms | 内存限制:65535 KB 难度:3 描写叙述 我们的问题非常是简单.n! 末尾非0数是几? 比方n=5的时候,n! =120,那么n!末尾非0数是2. ...
- 微信公众平台中临时二维码的scene_id为32位非0整型
原文:微信公众平台中临时二维码的scene_id为32位非0整型 微信公众平台中临时二维码的scene_id为32位非0整 ...
- POJ 1401:Factorial 求一个数阶乘的末尾0的个数
Factorial Time Limit: 1500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 9349 Descri ...
- Myeclipse 2015 stable 2.0 完美破解方法
2015-08-21 以前写了一篇<Myeclipse 2015 stable 1.0 完美破解方法>,现 在跟新一下Myeclipse 2015 stable 2.0 破解方法,此方法 ...
- Myeclipse 2015 stable 1.0 完美破解方法(转自 http://yangl.net/2015/07/14/myeclipse_2015stable_1/)
Myeclipse 2015 stable 1.0 完美破解方法 http://yangl.net/2015/07/14/myeclipse_2015stable_1/ 破解包(注册机)下载地址:链接 ...
- java ee@ Myeclipse 2015 stable 1.0 完美破解方法
Myeclipse 2015 stable 1.0 完美破解方法 破解步骤: 使用以前的注册机算号,版本选择Blue即可,后续可解锁Spring高级功能,即Bling的所有功能全部具备 1.1 进入m ...
- 使用.netFx4.0提供的方法解决32位程序访问64位系统的64位注册表
原文:使用.netFx4.0提供的方法解决32位程序访问64位系统的64位注册表 我们知道目标平台是32位的程序运行在64位的系统上,去访问部分注册表的时候系统自动重定向到win32node节点对应的 ...
随机推荐
- linux系统文件
关于linux系统文件命令 (1)Linux的文件系统目录配置要遵循FHS规范,规范定义的两级目录规范如下: /home 每个账号在该目录下都有一个文件夹,进行数据的管理 ...
- JS简介——(一)
0.结构
- _csv.Error: line contains NULL byte
原因是表格保存时扩展名为 xls,而我们将其改为csv文件通常是重命名: 解决方法只需把它另存为 csv 文件.
- 使用纯注解与配置类开发springMVC项目,去掉xml配置
最近拜读了杨开振老师的书,深入浅出springBoot2.x,挖掘了很多以前被忽略的知识, 开发一年多,工作中一直用传统springmvc的开发,基本都还是用的传统的xml配置开发, 看到书里有提到, ...
- js面试题之求数组最值
今天继续分享js常见的面试题,求数组最大值,最小值,这里列举4种常见解法,还有其他方法也可以实现,读者知道可以私信我,我将把意见列举到博客中,欢迎提出意见. 第一种,利用数组排序 var arr=[3 ...
- java基础36 双例集合Map下的HashMap和TreeMap集合
单例集合体系: ---------| collection 单例集合的根接口--------------| List 如果实现了list接口的集合类,具备的特点:有序,可重复 注:集合 ...
- Centos简介
Centos作为主流的一种Linux操作系统,以后项目中,比如后期Redis,以及部署一些项目,会把Centos作为服务器操作系统,我们选用Centos,主要是免费,以及稳定. Centos详细介绍, ...
- (五)动态SQL
第一节:if条件 第二节:choose,when和otherwise条件 第三节:where条件 1.自动加上where: 2.如果where子句以and或者or开头,则自动删除第一个and或者or: ...
- (三)使用XML配置SQL映射器
SqlSessionFactoryUtil.java package com.javaxk.util; import java.io.IOException; import java.io.Input ...
- SQL2008关于权限的解释
在SQL2008中我自己创建的一个登录名,可是那个登录名只可以用来登录,对数据库的操作什么都不能,连读取数据库都不可以.因为权限不够,只要把登录名的属性打开点击“服务器角色”,把public和sysa ...