Floyd算法(一)之 C语言详解

本章介绍弗洛伊德算法。和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。

目录
1. 弗洛伊德算法介绍
2. 弗洛伊德算法图解
3. 弗洛伊德算法的代码说明
4. 弗洛伊德算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

弗洛伊德算法介绍

和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

基本思想

通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。
接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" >
"a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。
同理,第k次更新时,如果"a[i][j]的距离" >
"a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

弗洛伊德算法图解

以上图G4为例,来对弗洛伊德进行算法演示。

初始状态:S是记录各个顶点间最短路径的矩阵。
第1步:初始化S。
    矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。
    注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
    以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。

同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。

弗洛伊德算法的代码说明

以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

2. 弗洛伊德算法

/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* G -- 图
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
int i,j,k;
int tmp; // 初始化
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
dist[i][j] = G.matrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
} // 计算最短路径
for (k = 0; k < G.vexnum; k++)
{
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp)
{
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
} // 打印floyd最短路径的结果
printf("floyd: \n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%2d ", dist[i][j]);
printf("\n");
}
}

弗洛伊德算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的弗洛伊德算法源码。

1.邻接矩阵源码 matrix_udg.c

/**
 * C: Floyd算法获取最短路径(邻接矩阵)
 *
 * @author skywang
 * @date 2014/04/25
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

//#define MAX         100                 // 矩阵最大容量
#define MAX         100                 // 矩阵最大容量
#define INF         (~(0x1<<31))        // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)   (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(Graph G, char ch)
{
    int i;
    for(i=0; i<G.vexnum; i++)
        if(G.vexs[i]==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

do {
        ch = getchar();
    } while(!isLetter(ch));

return ch;
}

/*
 * 创建图(自己输入)
 */
Graph* create_graph()
{
    char c1, c2;
    int v, e;
    int i, j, weight, p1, p2;
    Graph* pG;
   
    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }
   
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

// 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i] = read_char();
    }

// 1. 初始化"边"的权值
    for (i = 0; i < pG->vexnum; i++)
    {
        for (j = 0; j < pG->vexnum; j++)
        {
            if (i==j)
                pG->matrix[i][j] = 0;
            else
                pG->matrix[i][j] = INF;
        }
    }
    // 2. 初始化"边"的权值: 根据用户的输入进行初始化
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点,结束顶点,权值
        printf("edge(%d):", i);
        c1 = read_char();
        c2 = read_char();
        scanf("%d", &weight);

p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        if (p1==-1 || p2==-1)
        {
            printf("input error: invalid edge!\n");
            free(pG);
            return NULL;
        }

pG->matrix[p1][p2] = weight;
        pG->matrix[p2][p1] = weight;
    }

return pG;
}

/*
 * 创建图(用已提供的矩阵)
 */
Graph* create_example_graph()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    int matrix[][9] = {
             /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
      /*A*/ {   0,  12, INF, INF, INF,  16,  14},
      /*B*/ {  12,   0,  10, INF, INF,   7, INF},
      /*C*/ { INF,  10,   0,   3,   5,   6, INF},
      /*D*/ { INF, INF,   3,   0,   4, INF, INF},
      /*E*/ { INF, INF,   5,   4,   0,   2,   8},
      /*F*/ {  16,   7,   6, INF,   2,   0,   9},
      /*G*/ {  14, INF, INF, INF,   8,   9,   0}};
    int vlen = LENGTH(vexs);
    int i, j;
    Graph* pG;
   
    // 输入"顶点数"和"边数"
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

// 初始化"顶点数"
    pG->vexnum = vlen;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
        pG->vexs[i] = vexs[i];

// 初始化"边"
    for (i = 0; i < pG->vexnum; i++)
        for (j = 0; j < pG->vexnum; j++)
            pG->matrix[i][j] = matrix[i][j];

// 统计边的数目
    for (i = 0; i < pG->vexnum; i++)
        for (j = 0; j < pG->vexnum; j++)
            if (i!=j && pG->matrix[i][j]!=INF)
                pG->edgnum++;
    pG->edgnum /= 2;

return pG;
}

/*
 * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
 */
static int first_vertex(Graph G, int v)
{
    int i;

if (v<0 || v>(G.vexnum-1))
        return -1;

for (i = 0; i < G.vexnum; i++)
        if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
            return i;

return -1;
}

/*
 * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
 */
static int next_vertix(Graph G, int v, int w)
{
    int i;

if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
        return -1;

for (i = w + 1; i < G.vexnum; i++)
        if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
            return i;

return -1;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(Graph G, int i, int *visited)
{                                  
    int w;

visited[i] = 1;
    printf("%c ", G.vexs[i]);
    // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
    for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w))
    {
        if (!visited[w])
            DFS(G, w, visited);
    }
      
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(Graph G)
{
    int i;
    int visited[MAX];       // 顶点访问标记

// 初始化所有顶点都没有被访问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        //printf("\n== LOOP(%d)\n", i);
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("\n");
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void BFS(Graph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;

for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i]);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear)
        {
            j = queue[head++];  // 出队列
            for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点
            {
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k]);
                    queue[rear++] = k;
                }
            }
        }
    }
    printf("\n");
}

/*
 * 打印矩阵队列图
 */
void print_graph(Graph G)
{
    int i,j;

printf("Martix Graph:\n");
    for (i = 0; i < G.vexnum; i++)
    {
        for (j = 0; j < G.vexnum; j++)
            printf("%10d ", G.matrix[i][j]);
        printf("\n");
    }
}

/*
 * prim最小生成树
 *
 * 参数说明:
 *       G -- 邻接矩阵图
 *   start -- 从图中的第start个元素开始,生成最小树
 */
void prim(Graph G, int start)
{
    int min,i,j,k,m,n,sum;
    int index=0;         // prim最小树的索引,即prims数组的索引
    char prims[MAX];     // prim最小树的结果数组
    int weights[MAX];    // 顶点间边的权值

// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
    prims[index++] = G.vexs[start];

// 初始化"顶点的权值数组",
    // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
    for (i = 0; i < G.vexnum; i++ )
        weights[i] = G.matrix[start][i];
    // 将第start个顶点的权值初始化为0。
    // 可以理解为"第start个顶点到它自身的距离为0"。
    weights[start] = 0;

for (i = 0; i < G.vexnum; i++)
    {
        // 由于从start开始的,因此不需要再对第start个顶点进行处理。
        if(start == i)
            continue;

j = 0;
        k = 0;
        min = INF;
        // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
        while (j < G.vexnum)
        {
            // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
            if (weights[j] != 0 && weights[j] < min)
            {
                min = weights[j];
                k = j;
            }
            j++;
        }

// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
        // 将第k个顶点加入到最小生成树的结果数组中
        prims[index++] = G.vexs[k];
        // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
        weights[k] = 0;
        // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
        for (j = 0 ; j < G.vexnum; j++)
        {
            // 当第j个节点没有被处理,并且需要更新时才被更新。
            if (weights[j] != 0 && G.matrix[k][j] < weights[j])
                weights[j] = G.matrix[k][j];
        }
    }

// 计算最小生成树的权值
    sum = 0;
    for (i = 1; i < index; i++)
    {
        min = INF;
        // 获取prims[i]在G中的位置
        n = get_position(G, prims[i]);
        // 在vexs[0...i]中,找出到j的权值最小的顶点。
        for (j = 0; j < i; j++)
        {
            m = get_position(G, prims[j]);
            if (G.matrix[m][n]<min)
                min = G.matrix[m][n];
        }
        sum += min;
    }
    // 打印最小生成树
    printf("PRIM(%c)=%d: ", G.vexs[start], sum);
    for (i = 0; i < index; i++)
        printf("%c ", prims[i]);
    printf("\n");
}

/*
 * 获取图中的边
 */
EData* get_edges(Graph G)
{
    int i,j;
    int index=0;
    EData *edges;

edges = (EData*)malloc(G.edgnum*sizeof(EData));
    for (i=0;i < G.vexnum;i++)
    {
        for (j=i+1;j < G.vexnum;j++)
        {
            if (G.matrix[i][j]!=INF)
            {
                edges[index].start  = G.vexs[i];
                edges[index].end    = G.vexs[j];
                edges[index].weight = G.matrix[i][j];
                index++;
            }
        }
    }

return edges;
}

/*
 * 对边按照权值大小进行排序(由小到大)
 */
void sorted_edges(EData* edges, int elen)
{
    int i,j;

for (i=0; i<elen; i++)
    {
        for (j=i+1; j<elen; j++)
        {
            if (edges[i].weight > edges[j].weight)
            {
                // 交换"第i条边"和"第j条边"
                EData tmp = edges[i];
                edges[i] = edges[j];
                edges[j] = tmp;
            }
        }
    }
}

/*
 * 获取i的终点
 */
int get_end(int vends[], int i)
{
    while (vends[i] != 0)
        i = vends[i];
    return i;
}

/*
 * 克鲁斯卡尔(Kruskal)最小生成树
 */
void kruskal(Graph G)
{
    int i,m,n,p1,p2;
    int length;
    int index = 0;          // rets数组的索引
    int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
    EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
    EData *edges;           // 图对应的所有边

// 获取"图中所有的边"
    edges = get_edges(G);
    // 将边按照"权"的大小进行排序(从小到大)
    sorted_edges(edges, G.edgnum);

for (i=0; i<G.edgnum; i++)
    {
        p1 = get_position(G, edges[i].start);   // 获取第i条边的"起点"的序号
        p2 = get_position(G, edges[i].end);     // 获取第i条边的"终点"的序号

m = get_end(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
        n = get_end(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
        // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
        if (m != n)
        {
            vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
            rets[index++] = edges[i];           // 保存结果
        }
    }
    free(edges);

// 统计并打印"kruskal最小生成树"的信息
    length = 0;
    for (i = 0; i < index; i++)
        length += rets[i].weight;
    printf("Kruskal=%d: ", length);
    for (i = 0; i < index; i++)
        printf("(%c,%c) ", rets[i].start, rets[i].end);
    printf("\n");
}

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
   
    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;              // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

// 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;

// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

// 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

// 打印dijkstra最短路径的结果
    printf("dijkstra(%c): \n", G.vexs[vs]);
    for (i = 1; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

/*
 * floyd最短路径。
 * 即,统计图中各个顶点间的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *     path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
 *     dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
 */
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
    int i,j,k;
    int tmp;

// 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        for (j = 0; j < G.vexnum; j++)
        {
            dist[i][j] = G.matrix[i][j];    // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
            path[i][j] = j;                 // "顶点i"到"顶点j"的最短路径是经过顶点j。
        }
    }

// 计算最短路径
    for (k = 0; k < G.vexnum; k++)
    {
        for (i = 0; i < G.vexnum; i++)
        {
            for (j = 0; j < G.vexnum; j++)
            {
                // 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
                tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
                if (dist[i][j] > tmp)
                {
                    // "i到j最短路径"对应的值设,为更小的一个(即经过k)
                    dist[i][j] = tmp;
                    // "i到j最短路径"对应的路径,经过k
                    path[i][j] = path[i][k];
                }
            }
        }
    }

// 打印floyd最短路径的结果
    printf("floyd: \n");
    for (i = 0; i < G.vexnum; i++)
    {
        for (j = 0; j < G.vexnum; j++)
            printf("%2d  ", dist[i][j]);
        printf("\n");
    }
}

void main()
{
    int prev[MAX] = {0};    // 用于保存dijkstra路径
    int dist[MAX] = {0};    // 用于保存dijkstra长度
    int path[MAX][MAX] = {0};    // 用于保存floyd路径
    int floy[MAX][MAX] = {0};    // 用于保存floyd长度
    Graph* pG;

// 自定义"图"(输入矩阵队列)
    //pG = create_graph();
    // 采用已有的"图"
    pG = create_example_graph();

//print_graph(*pG);       // 打印图
    //DFSTraverse(*pG);       // 深度优先遍历
    //BFS(*pG);               // 广度优先遍历
    //prim(*pG, 0);           // prim算法生成最小生成树
    //kruskal(*pG);           // kruskal算法生成最小生成树

// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
    //dijkstra(*pG, 3, prev, dist);

// floyd算法获取各个顶点之间的最短距离
    floyd(*pG, path, floy);
}

2.邻接表源码 list_udg.c

/**
 * C: Floyd算法获取最短路径(邻接表)
 *
 * @author skywang
 * @date 2014/04/25
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX         100
#define INF         (~(0x1<<31))        // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)   (sizeof(a)/sizeof(a[0]))

// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
    int ivex;                   // 该边的顶点的位置
    int weight;                 // 该边的权
    struct _ENode *next_edge;   // 指向下一条弧的指针
}ENode, *PENode;

// 邻接表中表的顶点
typedef struct _VNode
{
    char data;              // 顶点信息
    ENode *first_edge;      // 指向第一条依附该顶点的弧
}VNode;

// 邻接表
typedef struct _LGraph
{
    int vexnum;             // 图的顶点的数目
    int edgnum;             // 图的边的数目
    VNode vexs[MAX];
}LGraph;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(LGraph G, char ch)
{
    int i;
    for(i=0; i<G.vexnum; i++)
        if(G.vexs[i].data==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

do {
        ch = getchar();
    } while(!isLetter(ch));

return ch;
}

/*
 * 将node链接到list的末尾
 */
static void link_last(ENode *list, ENode *node)
{
    ENode *p = list;

while(p->next_edge)
        p = p->next_edge;
    p->next_edge = node;
}

/*
 * 创建邻接表对应的图(自己输入)
 */
LGraph* create_lgraph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    int weight;
    ENode *node1, *node2;
    LGraph* pG;

// 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }
 
    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

// 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i].data = read_char();
        pG->vexs[i].first_edge = NULL;
    }

// 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点,结束顶点,权
        printf("edge(%d): ", i);
        c1 = read_char();
        c2 = read_char();
        scanf("%d", &weight);

p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);

// 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        node1->weight = weight;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
          pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
        // 初始化node2
        node2 = (ENode*)malloc(sizeof(ENode));
        node2->ivex = p1;
        node2->weight = weight;
        // 将node2链接到"p2所在链表的末尾"
        if(pG->vexs[p2].first_edge == NULL)
            pG->vexs[p2].first_edge = node2;
        else
            link_last(pG->vexs[p2].first_edge, node2);
    }

return pG;
}

// 边的结构体
typedef struct _edata
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

// 顶点
static char  gVexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
// 边
static EData gEdges[] = {
  // 起点 终点 权
    {'A', 'B', 12},
    {'A', 'F', 16},
    {'A', 'G', 14},
    {'B', 'C', 10},
    {'B', 'F',  7},
    {'C', 'D',  3},
    {'C', 'E',  5},
    {'C', 'F',  6},
    {'D', 'E',  4},
    {'E', 'F',  2},
    {'E', 'G',  8},
    {'F', 'G',  9},
};

/*
 * 创建邻接表对应的图(用已提供的数据)
 */
LGraph* create_example_lgraph()
{
    char c1, c2;
    int vlen = LENGTH(gVexs);
    int elen = LENGTH(gEdges);
    int i, p1, p2;
    int weight;
    ENode *node1, *node2;
    LGraph* pG;

if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

// 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        pG->vexs[i].data = gVexs[i];
        pG->vexs[i].first_edge = NULL;
    }

// 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点,结束顶点,权
        c1 = gEdges[i].start;
        c2 = gEdges[i].end;
        weight = gEdges[i].weight;

p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);

// 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        node1->weight = weight;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
            pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
        // 初始化node2
        node2 = (ENode*)malloc(sizeof(ENode));
        node2->ivex = p1;
        node2->weight = weight;
        // 将node2链接到"p2所在链表的末尾"
        if(pG->vexs[p2].first_edge == NULL)
            pG->vexs[p2].first_edge = node2;
        else
            link_last(pG->vexs[p2].first_edge, node2);
    }

return pG;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(LGraph G, int i, int *visited)
{
    int w;
    ENode *node;

visited[i] = 1;
    printf("%c ", G.vexs[i].data);
    node = G.vexs[i].first_edge;
    while (node != NULL)
    {
        if (!visited[node->ivex])
            DFS(G, node->ivex, visited);
        node = node->next_edge;
    }
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(LGraph G)
{
    int i;
    int visited[MAX];       // 顶点访问标记

// 初始化所有顶点都没有被访问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("\n");
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void BFS(LGraph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;
    ENode *node;

for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i].data);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear)
        {
            j = queue[head++];  // 出队列
            node = G.vexs[j].first_edge;
            while (node != NULL)
            {
                k = node->ivex;
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k].data);
                    queue[rear++] = k;
                }
                node = node->next_edge;
            }
        }
    }
    printf("\n");
}

/*
 * 打印邻接表图
 */
void print_lgraph(LGraph G)
{
    int i,j;
    ENode *node;

printf("List Graph:\n");
    for (i = 0; i < G.vexnum; i++)
    {
        printf("%d(%c): ", i, G.vexs[i].data);
        node = G.vexs[i].first_edge;
        while (node != NULL)
        {
            printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data);
            node = node->next_edge;
        }
        printf("\n");
    }
}

/*
 * 获取G中边<start, end>的权值;若start和end不是连通的,则返回无穷大。
 */
int get_weight(LGraph G, int start, int end)
{
    ENode *node;

if (start==end)
        return 0;

node = G.vexs[start].first_edge;
    while (node!=NULL)
    {
        if (end==node->ivex)
            return node->weight;
        node = node->next_edge;
    }

return INF;
}

/*
 * prim最小生成树
 *
 * 参数说明:
 *       G -- 邻接表图
 *   start -- 从图中的第start个元素开始,生成最小树
 */
void prim(LGraph G, int start)
{
    int min,i,j,k,m,n,tmp,sum;
    int index=0;         // prim最小树的索引,即prims数组的索引
    char prims[MAX];     // prim最小树的结果数组
    int weights[MAX];    // 顶点间边的权值

// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
    prims[index++] = G.vexs[start].data;

// 初始化"顶点的权值数组",
    // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
    for (i = 0; i < G.vexnum; i++ )
        weights[i] = get_weight(G, start, i);

for (i = 0; i < G.vexnum; i++)
    {
        // 由于从start开始的,因此不需要再对第start个顶点进行处理。
        if(start == i)
            continue;

j = 0;
        k = 0;
        min = INF;
        // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
        while (j < G.vexnum)
        {
            // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
            if (weights[j] != 0 && weights[j] < min)
            {
                min = weights[j];
                k = j;
            }
            j++;
        }

// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
        // 将第k个顶点加入到最小生成树的结果数组中
        prims[index++] = G.vexs[k].data;
        // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
        weights[k] = 0;
        // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
        for (j = 0 ; j < G.vexnum; j++)
        {
            // 获取第k个顶点到第j个顶点的权值
            tmp = get_weight(G, k, j);
            // 当第j个节点没有被处理,并且需要更新时才被更新。
            if (weights[j] != 0 && tmp < weights[j])
                weights[j] = tmp;
        }
    }

// 计算最小生成树的权值
    sum = 0;
    for (i = 1; i < index; i++)
    {
        min = INF;
        // 获取prims[i]在G中的位置
        n = get_position(G, prims[i]);
        // 在vexs[0...i]中,找出到j的权值最小的顶点。
        for (j = 0; j < i; j++)
        {
            m = get_position(G, prims[j]);
            tmp = get_weight(G, m, n);
            if (tmp < min)
                min = tmp;
        }
        sum += min;
    }
    // 打印最小生成树
    printf("PRIM(%c)=%d: ", G.vexs[start].data, sum);
    for (i = 0; i < index; i++)
        printf("%c ", prims[i]);
    printf("\n");
}

/*
 * 获取图中的边
 */
EData* get_edges(LGraph G)
{
    int i,j;
    int index=0;
    ENode *node;
    EData *edges;

edges = (EData*)malloc(G.edgnum*sizeof(EData));
    for (i=0; i<G.vexnum; i++)
    {
        node = G.vexs[i].first_edge;
        while (node != NULL)
        {
            if (node->ivex > i)
            {
                edges[index].start  = G.vexs[i].data;           // 起点
                edges[index].end    = G.vexs[node->ivex].data;  // 终点
                edges[index].weight = node->weight;             // 权
                index++;
            }
            node = node->next_edge;
        }
    }

return edges;
}

/*
 * 对边按照权值大小进行排序(由小到大)
 */
void sorted_edges(EData* edges, int elen)
{
    int i,j;

for (i=0; i<elen; i++)
    {
        for (j=i+1; j<elen; j++)
        {
            if (edges[i].weight > edges[j].weight)
            {
                // 交换"第i条边"和"第j条边"
                EData tmp = edges[i];
                edges[i] = edges[j];
                edges[j] = tmp;
            }
        }
    }
}

/*
 * 获取i的终点
 */
int get_end(int vends[], int i)
{
    while (vends[i] != 0)
        i = vends[i];
    return i;
}

/*
 * 克鲁斯卡尔(Kruskal)最小生成树
 */
void kruskal(LGraph G)
{
    int i,m,n,p1,p2;
    int length;
    int index = 0;          // rets数组的索引
    int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
    EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
    EData *edges;           // 图对应的所有边

// 获取"图中所有的边"
    edges = get_edges(G);
    // 将边按照"权"的大小进行排序(从小到大)
    sorted_edges(edges, G.edgnum);

for (i=0; i<G.edgnum; i++)
    {
        p1 = get_position(G, edges[i].start);   // 获取第i条边的"起点"的序号
        p2 = get_position(G, edges[i].end);     // 获取第i条边的"终点"的序号

m = get_end(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
        n = get_end(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
        // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
        if (m != n)
        {
            vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
            rets[index++] = edges[i];           // 保存结果
        }
    }
    free(edges);

// 统计并打印"kruskal最小生成树"的信息
    length = 0;
    for (i = 0; i < index; i++)
        length += rets[i].weight;
    printf("Kruskal=%d: ", length);
    for (i = 0; i < index; i++)
        printf("(%c,%c) ", rets[i].start, rets[i].end);
    printf("\n");
}

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void dijkstra(LGraph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
   
    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;                    // 顶点i的最短路径还没获取到。
        prev[i] = 0;                    // 顶点i的前驱顶点为0。
        dist[i] = get_weight(G, vs, i);  // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

// 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;

// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

// 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = get_weight(G, k, j);
            tmp = (tmp==INF ? INF : (min + tmp)); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

// 打印dijkstra最短路径的结果
    printf("dijkstra(%c): \n", G.vexs[vs].data);
    for (i = 0; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs].data, G.vexs[i].data, dist[i]);
}

/*
 * floyd最短路径。
 * 即,统计图中各个顶点间的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *     path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
 *     dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
 */
void floyd(LGraph G, int path[][MAX], int dist[][MAX])
{
    int i,j,k;
    int tmp;

// 初始化
    for (i = 0; i < G.vexnum; i++) {
        for (j = 0; j < G.vexnum; j++) {
            dist[i][j] = get_weight(G, i, j);// "顶点i"到"顶点j"的路径长度为"i到j的权值"。
            path[i][j] = j;                  // "顶点i"到"顶点j"的最短路径是经过顶点j。
        }
    }

// 计算最短路径
    for (k = 0; k < G.vexnum; k++)
    {
        for (i = 0; i < G.vexnum; i++)
        {
            for (j = 0; j < G.vexnum; j++)
            {
                // 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
                tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
                if (dist[i][j] > tmp)
                {
                    // "i到j最短路径"对应的值设,为更小的一个(即经过k)
                    dist[i][j] = tmp;
                    // "i到j最短路径"对应的路径,经过k
                    path[i][j] = path[i][k];
                }
            }
        }
    }

// 打印floyd最短路径的结果
    printf("floyd: \n");
    for (i = 0; i < G.vexnum; i++)
    {
        for (j = 0; j < G.vexnum; j++)
            printf("%2d  ", dist[i][j]);
        printf("\n");
    }
}

void main()
{
    int prev[MAX] = {0};
    int dist[MAX] = {0};
    int path[MAX][MAX] = {0};    // 用于保存floyd路径
    int floy[MAX][MAX] = {0};    // 用于保存floyd长度
    LGraph* pG;

// 自定义"图"(自己输入数据)
    //pG = create_lgraph();
    // 采用已有的"图"
    pG = create_example_lgraph();

//print_lgraph(*pG);    // 打印图
    //DFSTraverse(*pG);     // 深度优先遍历
    //BFS(*pG);             // 广度优先遍历
    //prim(*pG, 0);         // prim算法生成最小生成树
    //kruskal(*pG);         // kruskal算法生成最小生成树

// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
    //dijkstra(*pG, 3, prev, dist);

// floyd算法获取各个顶点之间的最短距离
    floyd(*pG, path, floy);
}

/**
* C: Floyd算法获取最短路径(邻接矩阵)
*
* @author skywang
* @date 2014/04/25
*/
 
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
 
//#define MAX 100 // 矩阵最大容量
#define MAX 100 // 矩阵最大容量
#define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))
 
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
 
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
 
/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position(Graph G, char ch)
{
int i;
for(i=0; i<G.vexnum; i++)
if(G.vexs[i]==ch)
return i;
return -1;
}
 
/*
* 读取一个输入字符
*/
static char read_char()
{
char ch;
 
do {
ch = getchar();
} while(!isLetter(ch));
 
return ch;
}
 
/*
* 创建图(自己输入)
*/
Graph* create_graph()
{
char c1, c2;
int v, e;
int i, j, weight, p1, p2;
Graph* pG;
 
// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
 
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
 
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
}
 
// 1. 初始化"边"的权值
for (i = 0; i < pG->vexnum; i++)
{
for (j = 0; j < pG->vexnum; j++)
{
if (i==j)
pG->matrix[i][j] = 0;
else
pG->matrix[i][j] = INF;
}
}
// 2. 初始化"边"的权值: 根据用户的输入进行初始化
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点,结束顶点,权值
printf("edge(%d):", i);
c1 = read_char();
c2 = read_char();
scanf("%d", &weight);
 
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1==-1 || p2==-1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}
 
pG->matrix[p1][p2] = weight;
pG->matrix[p2][p1] = weight;
}
 
return pG;
}
 
/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int matrix[][9] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, INF, INF, 16, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, 5, 6, INF},
/*D*/ { INF, INF, 3, 0, 4, INF, INF},
/*E*/ { INF, INF, 5, 4, 0, 2, 8},
/*F*/ { 16, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
int vlen = LENGTH(vexs);
int i, j;
Graph* pG;
 
// 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
 
// 初始化"顶点数"
pG->vexnum = vlen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
pG->vexs[i] = vexs[i];
 
// 初始化"边"
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
pG->matrix[i][j] = matrix[i][j];
 
// 统计边的数目
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
if (i!=j && pG->matrix[i][j]!=INF)
pG->edgnum++;
pG->edgnum /= 2;
 
return pG;
}
 
/*
* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/
static int first_vertex(Graph G, int v)
{
int i;
 
if (v<0 || v>(G.vexnum-1))
return -1;
 
for (i = 0; i < G.vexnum; i++)
if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
return i;
 
return -1;
}
 
/*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/
static int next_vertix(Graph G, int v, int w)
{
int i;
 
if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
return -1;
 
for (i = w + 1; i < G.vexnum; i++)
if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
return i;
 
return -1;
}
 
/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS(Graph G, int i, int *visited)
{
int w;
 
visited[i] = 1;
printf("%c ", G.vexs[i]);
// 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w))
{
if (!visited[w])
DFS(G, w, visited);
}
 
}
 
/*
* 深度优先搜索遍历图
*/
void DFSTraverse(Graph G)
{
int i;
int visited[MAX]; // 顶点访问标记
 
// 初始化所有顶点都没有被访问
for (i = 0; i < G.vexnum; i++)
visited[i] = 0;
 
printf("DFS: ");
for (i = 0; i < G.vexnum; i++)
{
//printf("\n== LOOP(%d)\n", i);
if (!visited[i])
DFS(G, i, visited);
}
printf("\n");
}
 
/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS(Graph G)
{
int head = 0;
int rear = 0;
int queue[MAX]; // 辅组队列
int visited[MAX]; // 顶点访问标记
int i, j, k;
 
for (i = 0; i < G.vexnum; i++)
visited[i] = 0;
 
printf("BFS: ");
for (i = 0; i < G.vexnum; i++)
{
if (!visited[i])
{
visited[i] = 1;
printf("%c ", G.vexs[i]);
queue[rear++] = i; // 入队列
}
while (head != rear)
{
j = queue[head++]; // 出队列
for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点
{
if (!visited[k])
{
visited[k] = 1;
printf("%c ", G.vexs[k]);
queue[rear++] = k;
}
}
}
}
printf("\n");
}
 
/*
* 打印矩阵队列图
*/
void print_graph(Graph G)
{
int i,j;
 
printf("Martix Graph:\n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%10d ", G.matrix[i][j]);
printf("\n");
}
}
 
/*
* prim最小生成树
*
* 参数说明:
* G -- 邻接矩阵图
* start -- 从图中的第start个元素开始,生成最小树
*/
void prim(Graph G, int start)
{
int min,i,j,k,m,n,sum;
int index=0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值
 
// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = G.vexs[start];
 
// 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < G.vexnum; i++ )
weights[i] = G.matrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0;
 
for (i = 0; i < G.vexnum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue;
 
j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < G.vexnum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
}
 
// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = G.vexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < G.vexnum; j++)
{
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && G.matrix[k][j] < weights[j])
weights[j] = G.matrix[k][j];
}
}
 
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
if (G.matrix[m][n]<min)
min = G.matrix[m][n];
}
sum += min;
}
// 打印最小生成树
printf("PRIM(%c)=%d: ", G.vexs[start], sum);
for (i = 0; i < index; i++)
printf("%c ", prims[i]);
printf("\n");
}
 
/*
* 获取图中的边
*/
EData* get_edges(Graph G)
{
int i,j;
int index=0;
EData *edges;
 
edges = (EData*)malloc(G.edgnum*sizeof(EData));
for (i=0;i < G.vexnum;i++)
{
for (j=i+1;j < G.vexnum;j++)
{
if (G.matrix[i][j]!=INF)
{
edges[index].start = G.vexs[i];
edges[index].end = G.vexs[j];
edges[index].weight = G.matrix[i][j];
index++;
}
}
}
 
return edges;
}
 
/*
* 对边按照权值大小进行排序(由小到大)
*/
void sorted_edges(EData* edges, int elen)
{
int i,j;
 
for (i=0; i<elen; i++)
{
for (j=i+1; j<elen; j++)
{
if (edges[i].weight > edges[j].weight)
{
// 交换"第i条边"和"第j条边"
EData tmp = edges[i];
edges[i] = edges[j];
edges[j] = tmp;
}
}
}
}
 
/*
* 获取i的终点
*/
int get_end(int vends[], int i)
{
while (vends[i] != 0)
i = vends[i];
return i;
}
 
/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
void kruskal(Graph G)
{
int i,m,n,p1,p2;
int length;
int index = 0; // rets数组的索引
int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边
EData *edges; // 图对应的所有边
 
// 获取"图中所有的边"
edges = get_edges(G);
// 将边按照"权"的大小进行排序(从小到大)
sorted_edges(edges, G.edgnum);
 
for (i=0; i<G.edgnum; i++)
{
p1 = get_position(G, edges[i].start); // 获取第i条边的"起点"的序号
p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号
 
m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点
n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}
free(edges);
 
// 统计并打印"kruskal最小生成树"的信息
length = 0;
for (i = 0; i < index; i++)
length += rets[i].weight;
printf("Kruskal=%d: ", length);
for (i = 0; i < index; i++)
printf("(%c,%c) ", rets[i].start, rets[i].end);
printf("\n");
}
 
/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
 
// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
 
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
 
// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
 
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
 
// 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 1; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}
 
/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* G -- 图
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
int i,j,k;
int tmp;
 
// 初始化
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
dist[i][j] = G.matrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
}
 
// 计算最短路径
for (k = 0; k < G.vexnum; k++)
{
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp)
{
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
}
 
// 打印floyd最短路径的结果
printf("floyd: \n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%2d ", dist[i][j]);
printf("\n");
}
}
 
void main()
{
int prev[MAX] = {0}; // 用于保存dijkstra路径
int dist[MAX] = {0}; // 用于保存dijkstra长度
int path[MAX][MAX] = {0}; // 用于保存floyd路径
int floy[MAX][MAX] = {0}; // 用于保存floyd长度
Graph* pG;
 
// 自定义"图"(输入矩阵队列)
//pG = create_graph();
// 采用已有的"图"
pG = create_example_graph();
 
//print_graph(*pG); // 打印图
//DFSTraverse(*pG); // 深度优先遍历
//BFS(*pG); // 广度优先遍历
//prim(*pG, 0); // prim算法生成最小生成树
//kruskal(*pG); // kruskal算法生成最小生成树
 
// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
//dijkstra(*pG, 3, prev, dist);
 
// floyd算法获取各个顶点之间的最短距离
floyd(*pG, path, floy);

}

深度解析(一六)Floyd算法的更多相关文章

  1. Kafka深度解析

    本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/01/02/Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅 ...

  2. VueRouter 源码深度解析

    VueRouter 源码深度解析 该文章内容节选自团队的开源项目 InterviewMap.项目目前内容包含了 JS.网络.浏览器相关.性能优化.安全.框架.Git.数据结构.算法等内容,无论是基础还 ...

  3. Kafka深度解析(如何在producer中指定partition)(转)

    原文链接:Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能 ...

  4. [WebKit内核] JavaScript引擎深度解析--基础篇(一)字节码生成及语法树的构建详情分析

    [WebKit内核] JavaScript引擎深度解析--基础篇(一)字节码生成及语法树的构建详情分析 标签: webkit内核JavaScriptCore 2015-03-26 23:26 2285 ...

  5. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  6. java内存分配和String类型的深度解析

    [尊重原创文章出自:http://my.oschina.net/xiaohui249/blog/170013] 摘要 从整体上介绍java内存的概念.构成以及分配机制,在此基础上深度解析java中的S ...

  7. STL库list::sort()实现深度解析

    原创,转载请注明出处:STL库list::sort()实现深度解析 list模板的定义以及一些基本成员函数的实现这里我就不赘述了,还不清楚的同学可以到网上查找相关资料或者直接查看侯捷翻译的<ST ...

  8. 深度学习word2vec笔记之算法篇

    深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料 ...

  9. SRM 581 D2 L3:TreeUnionDiv2,Floyd算法

    题目来源:http://community.topcoder.com//stat?c=problem_statement&pm=12587&rd=15501 这道题目开始以为是要在无向 ...

随机推荐

  1. Ubuntu下安装Hadoop

    终于把Hadoop的环境给配好了.在美国的第一个周末,非常的折腾,电脑坏了,一开机windows动画过后屏幕就没显示,无语死了,在想着人生地不熟的,哪里去找人修电脑,还好一个舍友说看到隔壁街有个PC ...

  2. 图像数据到网格数据-1——MarchingCubes算法

    原文:http://blog.csdn.net/u013339596/article/details/19167907 概述 之前的博文已经完整的介绍了三维图像数据和三角形网格数据.在实际应用中,利用 ...

  3. Angular路由与Nodejs路由的区别

    转自:http://www.imooc.com/qadetail/114683?t=148182 觉得angualr.js的路由是针对于单页面的路由,每次路由发生变化,只是页面的状态发生变化,页面本身 ...

  4. Immediately-Invoked Puzzler

    The Poplar Puzzle-makers weren’t too impressed. They barely noticed your simple and beautiful array ...

  5. readonly 和 disable的区别

    Readonly和Disabled它们都能够做到使用户不能够更改表单域中的内容.但是它们之间有着微小的差别,总结如下: Readonly只针对input(text / password)和textar ...

  6. Python网络编程 - 请求地址上的文件并下载

    我们用到了requests库,由于是第三方的,必须下载 如果是python 2.x用下面命令 pip install requests python 3.x用下面命令 easy_install req ...

  7. Windows平台Hadoop编译、安装、配置与运行(转)

    http://www.srccodes.com/p/article/38/build-install-configure-run-apache-hadoop-2.2.0-microsoft-windo ...

  8. QT内label控件通过opencv显示图像

    1.对pro进行配置.使其可以理解opencv. INCLUDEPATH+=d:\opencv249\include\opencv\ d:\opencv249\include\opencv2\ d:\ ...

  9. CentOS 下安装MySQL 默认源为5.1版本

    CentOS——默认为安装5.1版本,如果需要安装5.5版本,需要使用remi源 yum install mysql-server –enablerepo=remi   Ubuntu——默认为安装5. ...

  10. STS项目html文件中文乱码解决

    解决方案: windows -- perferences -- encoding,设置成utf-8 步骤一:Content Types 步骤二:Workspace 步骤三:JSP Files