点此看题面

大致题意: 规定一个\(n*m\)数表中每个数为\(\sum_{d|i,d|j}d\),求数表中不大于\(a\)的数之和。

不考虑限制

我们先不考虑限制,来推一波式子。

首先,易知数表中第\(i\)行第\(j\)列的数应该是\(\sigma(gcd(i,j))\)。

则和就为:

\[\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1]
\]

而\([gcd(i,j)=1]\)可以化成\(\sum_{p|gcd(i,j)}\mu(p)\),若枚举\(p\),就得到:

\[\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{p=1}^{\lfloor\frac{min(n,m)}d\rfloor}\mu(p)\lfloor\frac n{dp}\rfloor\lfloor\frac m{dp}\rfloor
\]

设\(g=dp\),调整枚举顺序得到:

\[\sum_{g=1}^{min(n,m)}\lfloor\frac n{dp}\rfloor\lfloor\frac m{dp}\rfloor\sum_{d|g}\sigma(d)\mu(\frac gd)
\]

离线处理限制

考虑上面的式子只有当\(\sigma(d)\le a\)时才会被计算答案。

则我们考虑设\(T(g)=\sum_{d|g}\sigma(d)\mu(\frac gd)\),一开始全为\(0\)。

然后我们按照\(a\)从小到大枚举询问,每次将\(\sigma(d)\le a\)的\(d\)在\(10^5\)范围内的倍数所对应的\(T(g)\)全都加上\(\sigma(d)\mu(\frac gd)\)。

但注意到询问时使用除法分块需要求一段区间的\(T\)值和,则我们用树状数组维护就可以了。

关于取模的细节

注意,这里的取模是向\(2^{31}\)取模,则我们可以考虑先开\(unsigned\ int\)计算答案,最后再将其向\(2^{31}\)取模

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define Q 20000
#define MxS 500000
#define UI unsigned
#define RU Reg unsigned
#define CU Con unsigned&
#define LL long long
#define Gmax(x,y) (x<(y)&&(x=(y)))
#define min(x,y) ((x)<(y)?(x):(y))
#define max(x,y) ((x)>(y)?(x):(y))
#define pb push_back
#define IT vector<int>::iterator
using namespace std;
int Qt,Qans[Q+5];vector<int> s[MxS+5];
struct Query//询问
{
int x,y,v,pos;I Query(CI a=0,CI b=0,CI z=0,CI p=0):x(a),y(b),v(z),pos(p){}
I bool operator < (Con Query& o) Con {return v<o.v;}
}q[Q+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class LinearSiever//线性筛
{
private:
int Pt,P[N+5],Mn[N+5];
I LL Qpow(LL x,LL y) {LL t=1;W(y) y&1&&(t*=x),x*=x,y>>=1;return t;}//快速幂
public:
int MxSigma,sigma[N+5],mu[N+5];
I void Sieve(CI S)
{
RI i,j,x,t;for(mu[1]=1,i=2;i<=S;++i)//筛mu,筛最小质因数用于求sigma
{
!Mn[i]&&(mu[P[++Pt]=i]=-1,Mn[i]=i);
for(j=1;j<=Pt&&1LL*i*P[j]<=S;++j)
if(Mn[i*P[j]]=P[j],i%P[j]) mu[i*P[j]]=-mu[i];else break;
}
for(sigma[1]=1,i=2;i<=S;++i)//求sigma
{
x=i,t=0;W(!(x%Mn[i])) x/=Mn[i],++t;
sigma[i]=sigma[x]*((Qpow(Mn[i],t+1)-1)/(Mn[i]-1)),Gmax(MxSigma,sigma[i]);
}
}
}L;
class TreeArray//树状数组
{
private:
#define lowbit(x) (x&-x)
UI v[MxS+5];
I UI QS(RI x) {RU t=0;W(x) t+=v[x],x-=lowbit(x);return t;}//询问前缀
public:
I void Add(RI x,CI y) {W(x<=L.MxSigma) v[x]+=y,x+=lowbit(x);}//单点修改
I UI Qry(CI l,CI r) {return QS(r)-QS(l-1);}//区间查询
}T;
I void Upt(CI x,CI v) {for(RI i=1;1LL*x*i<=N;++i) T.Add(x*i,L.sigma[x]*L.mu[i]);}//更新一个数倍数的值
int main()
{
RI i,p=1,t,x,y,v,l,r;UI ans;for(L.Sieve(N),i=1;i<=N;++i) s[L.sigma[i]].pb(i);//用桶对sigma值进行排序
for(F.read(Qt),i=1;i<=Qt;++i) F.read(x,y,v),q[i]=Query(min(x,y),max(x,y),v,i);//读入询问
for(sort(q+1,q+Qt+1),i=1;i<=Qt;++i)//对询问按a从小到大排序
{
W(p<=q[i].v) {for(IT it=s[p].begin();it!=s[p].end();++it) Upt(*it,p);++p;}//更新sigma(d)≤a的d的倍数的T值
for(ans=0,t=min(q[i].x,q[i].y),l=1;l<=t;l=r+1)//除法分块
r=min(q[i].x/(q[i].x/l),q[i].y/(q[i].y/l)),ans+=T.Qry(l,r)*(q[i].x/l)*(q[i].y/l);
Qans[q[i].pos]=ans%(1LL<<31);//存储答案并取模
}
for(i=1;i<=Qt;++i) F.writeln(Qans[i]);return F.clear(),0;//输出答案
}

【BZOJ3529】[SDOI2014] 数表(莫比乌斯反演)的更多相关文章

  1. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  2. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  3. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  4. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  7. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  10. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

随机推荐

  1. es6中reduce()方法和reduceRight()方法

    es6中reduce()方法从左往右开始 参数:prev:它是上一次调用回调时返回的结果,每次调用的结果都会给prev cur:当前的元素 index:当前的索引 arr:循环的数组 返回值:函数累计 ...

  2. Sencha Modern

    Sencha Modern  前言         经过一个月捣鼓,基于sencha公司最新框架版本 ExtJS7.0 modern 的示例代码可以和大家见面了.示例中对系统主题.公共(组件,方法)封 ...

  3. LeetCode 225:用队列实现栈 Implement Stack using Queues

    题目: 使用队列实现栈的下列操作: push(x) -- 元素 x 入栈 pop() -- 移除栈顶元素 top() -- 获取栈顶元素 empty() -- 返回栈是否为空 Implement th ...

  4. tf.ConfigProto()

    tf.ConfigProto一般用在创建session的时候用来对session进行参数配置 with tf.Session(config=tf.ConfigProto(...)...) tf.Con ...

  5. elasticSearch查询(一)

    **整理成sql格式来看懂elastic** 1.多个字段多个and查询 sql格式:select * from product where title = 'xxxx' and pid = 12 l ...

  6. C#之初识异步

    什么是异步 举个例子:小明的妈妈让小明烧一壶水,水烧开后要倒进水壶里,同时还需要把家里打扫一下. 小明的操作流程一:烧水---->等待至水烧开----->水倒进水壶里--------> ...

  7. Java编程基础——数组和二维数组

    Java编程基础——数组和二维数组 摘要:本文主要对数组和二维数组进行简要介绍. 数组 定义 数组可以理解成保存一组数的容器,而变量可以理解为保存一个数的容器. 数组是一种引用类型,用于保存一组相同类 ...

  8. Python【day 11】迭代器

    迭代器-用 1.迭代器的概念 1.可迭代对象-iterable str.list.tuple.dict.set.open().range() 2.可迭代对象的概念: 其数据类型的执行方法中含有__it ...

  9. Vue.js 源码分析(七) 基础篇 侦听器 watch属性详解

    先来看看官网的介绍: 官网介绍的很好理解了,也就是监听一个数据的变化,当该数据变化时执行我们的watch方法,watch选项是一个对象,键为需要观察的数据名,值为一个表达式(函数),还可以是一个对象, ...

  10. Mac启动MySQL

    启动MySQL服务 sudo /usr/local/Cellar/mysql//bin/mysql.server start 停止MySQL服务 sudo /usr/local/Cellar/mysq ...