【LG5171】Earthquake
【LG5171Earthquake】
题面
题解
本题需要用到类欧几里得算法。
前置知识:类欧几里得
就是求函数$$\varphi (a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac {ai+b}c\right\rfloor$$
的值(其实还有两种形式,但是我还不会这里不做介绍)。
它的几何意义是直线\(y=\frac {ax+b}c\)在\([0,n]\)下方或过直线的第一象限内的整点数
令\(\xi(i)=\lfloor\frac {ai+b}c\rfloor\),
由结论\(\lfloor\frac{Ax}y\rfloor = \lfloor\frac{A(x\;\bmod\;y)}y\rfloor + A\lfloor\frac xy\rfloor\),
可以得到
\xi(i)&=\left\lfloor\frac{ai}c+\frac bc\right\rfloor
\\&=\left\lfloor\frac{(a\bmod c)i+(b\bmod c)} c\right\rfloor+i\Big\lfloor\frac ac\Big\rfloor+\Big\lfloor\frac bc\Big\rfloor
\end{aligned}
\]
然后可以得到\(\varphi(a,b,c,n)=\varphi(a\bmod c,b\bmod c, c, n)+\frac {n(n+1)}2\lfloor\frac ac\rfloor+(n+1)\lfloor\frac bc\rfloor\)。
现在我们将\(\xi(i)\)的值限制在了\([0,n]\)之内,考虑将\(\varphi\)用新的式子表示出来:
\varphi(a,b,c,n)&=\sum_{i=0}^n\sum_{d=1}^{\lfloor\frac {an+b}c\rfloor}\left[\lfloor\frac {ai+b}c\rfloor\geq d\right]\\&=\sum_{i=0}^n\sum_{d=0}^{\lfloor\frac {an+b}c\rfloor-1}\left[a^{-1}c\lfloor\frac {ai+b}c\rfloor\geq a^{-1}c(d+1)>a^{-1}(cd+c-1)\right]\\&=\sum_{i=0}^n\sum_{d=0}^{\lfloor\frac {an+b}c\rfloor-1}\left[i>\frac {cd+c-b-1}{a}\right]
\end{aligned}
\]
而右边艾弗森括号里的相当于统计有多少个数大于\(\frac {cd+c-b-1}{a}\),就相当于\(n-\lfloor\frac {cd+c-b-1}{a}\rfloor\),那么
\varphi(a,b,c,n)&=\sum_{d=0}^{\lfloor\frac {an+b}c\rfloor-1}(n-\left\lfloor\frac {cd+c-b-1}{a}\right\rfloor)\\
&=n\left\lfloor\frac {an+b}c\right\rfloor-\sum_{d=0}^{\lfloor\frac {an+b}c\rfloor-1}\left\lfloor\frac {cd+c-b-1}{a}\right\rfloor\\
&=n\left\lfloor\frac {an+b}c\right\rfloor-\varphi(c,c-b-1,a,\left\lfloor\frac {an+b}c\right\rfloor-1)\\
&=n\left\lfloor\frac {an+b}c\right\rfloor-\varphi(c,c-b-1,a,\xi(n)-1)
\end{aligned}
\]
现在就可以递归处理了,至于复杂度,仔细思考一下发现和\(\gcd\)复杂度一样,为\(O(\log n)\)。
代码实现:
long long f(long long a, long long b, long long c, long long n) {
if (!a) return b / c * (n + 1);
else if (a >= c || b >= c) return f(a % c, b % c, c, n) + n * (n + 1) / 2 * (a / c) + (n + 1) * (b / c);
else {
long long m = (a * n + b) / c;
return n * m - f(c, c - b - 1, a, m - 1);
}
}
关于此题
\]
就是求\(y=\frac {c-ax}{b}\)下方或过直线在第一象限及正半轴上的整点数。
令\(n=\lfloor\frac ca\rfloor\),那么两端的点就为\((0,\frac cb),(n,\frac {c-an}b)\)。
显然可以把两端的\(y\)值调换一下,那么两点变为\((0,\frac {c-an}b),(n,\frac cb)\),
此时这条直线变为\(y=\frac ab x+\frac {c-an}{b}=\frac {ax+(c\;\bmod\;a)}b\),然后套到类欧的模板里再加上坐标轴上的贡献即可。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
long long a, b, c;
long long f(long long a, long long b, long long c, long long n) {
if (!a) return b / c * (n + 1);
else if (a >= c || b >= c) return f(a % c, b % c, c, n) + n * (n + 1) / 2 * (a / c) + (n + 1) * (b / c);
else {
long long m = (a * n + b) / c;
return n * m - f(c, c - b - 1, a, m - 1);
}
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
cin >> a >> b >> c;
printf("%lld\n", f(a, c % a, b, c / a) + c / a + 1);
return 0;
}
【LG5171】Earthquake的更多相关文章
- 【LuoguP5171】Earthquake
题目链接 题意 求满足如下不等式的非负整数 \(x,y\) 的对数 \[ax+by\leq c\] Sol a,b,c 都是非负的,那么先随便变个形: \[y\leq\frac{c-ax}{b}\] ...
- 【BZOJ】1585: [Usaco2009 Mar]Earthquake Damage 2 地震伤害
[题意]给定无向图,现在可能有一些点已经被删除,只给出信息是c个点未被删除且不能到达结点1,求最少的删除点个数. [算法]最小割 [题解]本题和1的区别是:1求的是最少的不能到达1的结点数,那么就把损 ...
- 【BZOJ1585】【Luogu2944】地震损失2(网络流)
[BZOJ1585][Luogu2944]地震损失2(网络流) 题面 题目描述 Wisconsin has had an earthquake that has struck Farmer John' ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
随机推荐
- MySQL for OPS 08:MHA 高可用
写在前面的话 主从架构在一般情况下只能满足我们小公司业务并非一刻都不能中断服务.但是对于大型公司而言,对然数据丢失,数据库挂了,我们可以通过技术找回,修复.但是其中修复过程所消耗的时间是不被允许的.此 ...
- java架构之路(多线程)JMM和volatile关键字
说到JMM大家一定很陌生,被我们所熟知的一定是jvm虚拟机,而我们今天讲的JMM和JVM虚拟机没有半毛钱关系,千万不要把JMM的任何事情联想到JVM,把JMM当做一个完全新的事物去理解和认识. 我们先 ...
- Spring-AOP源码分析随手记(一)
1.@EnableAspectJAutoProxy(proxyTargetClass = true) 就是弄了个"org.springframework.aop.config.interna ...
- js变量--全局变量和局部变量
1.javaScript中在函数里声明的变量为局部变量,其余为全局变量. 2.javaScript没有块级元素
- 最新整理的spring面试题从基础到高级,干货满满
最新整理的spring面试题从基础到高级,干货满满 前言: 收藏了一些关于Spring的面试题,一方面是为了准备找工作的时候看面试题,另一方面,通过面试题的方式加深一些自己的理论知识. spring ...
- redis笔记3
redis持久化机制 redis提供了两种持久化策略 RDB RDB的持久化策略: 按照规则定时将内存的数据同步到磁盘 snapshot redis在指定的情况下会触发快照 自己配置的快照规则 sav ...
- SQLServer修改表名、修改列名
基本语法 修改表名:EXEC sp_rename ‘原有表名’, '新表名'; 修改列名:EXEC sp_rename ‘表名.[原有列名]’, ‘新列名' , 'COLUMN'; EXEC sp_r ...
- Git内部原理浅析
Git独特之处 Git是一个分布式版本控制系统,首先分布式意味着Git不仅仅在服务端有远程仓库,同时会在本地也保留一个完整的本地仓库(.git/文件夹),这种分布式让Git拥有下面几个特点: 1.直接 ...
- vue-cli3.0创建项目之完成登录页面
借鉴博客:https://www.cnblogs.com/KenFine/p/10850386.html 接着上一个创建的新项目vue-mydemo01来: 1.创建一个login.vue组件页面:如 ...
- [b0011] windows 下 eclipse 开发 hdfs程序样例 (三)
目的: 学习windows 开发hadoop程序的配置. [b0007] windows 下 eclipse 开发 hdfs程序样例 太麻烦 [b0010] windows 下 eclipse 开发 ...