Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。
Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 -


pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)
  • left - 一个DataFrame对象。
  • right - 另一个DataFrame对象。
  • on - 列(名称)连接,必须在左和右DataFrame对象中存在(找到)。
  • left_on - 左侧DataFrame中的列用作键,可以是列名或长度等于DataFrame长度的数组。
  • right_on - 来自右的DataFrame的列作为键,可以是列名或长度等于DataFrame长度的数组。
  • left_index - 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 在具有MultiIndex(分层)的DataFrame的情况下,级别的数量必须与来自右DataFrame的连接键的数量相匹配。
  • right_index - 与右DataFrame的left_index具有相同的用法。
  • how - 它是left, right, outer以及inner之中的一个,默认为内inner。 下面将介绍每种方法的用法。
  • sort - 按照字典顺序通过连接键对结果DataFrame进行排序。默认为True,设置为False时,在很多情况下大大提高性能。

现在创建两个不同的DataFrame并对其执行合并操作。

import pandas as pd
left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print (left)
print("========================================")
print (right)

输出结果:

     Name  id subject_id
0 Alex 1 sub1
1 Amy 2 sub2
2 Allen 3 sub4
3 Alice 4 sub6
4 Ayoung 5 sub5
========================================
Name id subject_id
0 Billy 1 sub2
1 Brian 2 sub4
2 Bran 3 sub3
3 Bryce 4 sub6
4 Betty 5 sub5
 

在一个键上合并两个数据帧

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left,right,on='id')
print(rs)

输出结果:

   Name_x  id subject_id_x Name_y subject_id_y
0 Alex 1 sub1 Billy sub2
1 Amy 2 sub2 Brian sub4
2 Allen 3 sub4 Bran sub3
3 Alice 4 sub6 Bryce sub6
4 Ayoung 5 sub5 Betty sub5
 

合并多个键上的两个数据框

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left,right,on=['id','subject_id'])
print(rs)

输出结果:

   Name_x  id subject_id Name_y
0 Alice 4 sub6 Bryce
1 Ayoung 5 sub5 Betty
 

合并使用“how”的参数

如何合并参数指定如何确定哪些键将被包含在结果表中。如果组合键没有出现在左侧或右侧表中,则连接表中的值将为NA

这里是how选项和SQL等效名称的总结 -

合并方法 SQL等效 描述
left LEFT OUTER JOIN 使用左侧对象的键
right RIGHT OUTER JOIN 使用右侧对象的键
outer FULL OUTER JOIN 使用键的联合
inner INNER JOIN 使用键的交集

Left Join示例

import pandas as pd
left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='left')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Alex 1 sub1 NaN NaN
1 Amy 2 sub2 Billy 1.0
2 Allen 3 sub4 Brian 2.0
3 Alice 4 sub6 Bryce 4.0
4 Ayoung 5 sub5 Betty 5.0
 

Right Join示例

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='right')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Amy 2.0 sub2 Billy 1
1 Allen 3.0 sub4 Brian 2
2 Alice 4.0 sub6 Bryce 4
3 Ayoung 5.0 sub5 Betty 5
4 NaN NaN sub3 Bran 3
 

Outer Join示例

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, how='outer', on='subject_id')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Alex 1.0 sub1 NaN NaN
1 Amy 2.0 sub2 Billy 1.0
2 Allen 3.0 sub4 Brian 2.0
3 Alice 4.0 sub6 Bryce 4.0
4 Ayoung 5.0 sub5 Betty 5.0
5 NaN NaN sub3 Bran 3.0
 

Inner Join示例

连接将在索引上进行。连接(Join)操作将授予它所调用的对象。所以,a.join(b)不等于b.join(a)

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='inner')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Amy 2 sub2 Billy 1
1 Allen 3 sub4 Brian 2
2 Alice 4 sub6 Bryce 4
3 Ayoung 5 sub5 Betty 5

Pandas | 19 合并/连接的更多相关文章

  1. oracle表连接------>排序合并连接(Merge Sort Join)

    排序合并连接 (Sort Merge Join)是一种两个表在做连接时用排序操作(Sort)和合并操作(Merge)来得到连接结果集的连接方法. 对于排序合并连接的优缺点及适用场景例如以下: a,通常 ...

  2. SQL连接操作符介绍(循环嵌套, 哈希匹配和合并连接)

    今天我将介绍在SQLServer 中的三种连接操作符类型,分别是:循环嵌套.哈希匹配和合并连接.主要对这三种连接的不同.复杂度用范例的形式一一介绍. 本文中使用了示例数据库AdventureWorks ...

  3. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  4. pandas列合并为一行

    将dataframe利用pandas列合并为一行,类似于sql的GROUP_CONCAT函数.例如如下dataframe id_part pred pred_class v_id 0 d 0 0.12 ...

  5. oracle 表连接 - sort merge joins 排序合并连接

    https://blog.csdn.net/dataminer_2007/article/details/41907581一. sort merge joins连接(排序合并连接) 原理 指的是两个表 ...

  6. arcgis中的Join(合并连接)和Relate(关联连接)

    arcgis中的Join(合并连接)和Relate(关联连接) 一.区别 1.连接关系不一样. Relate(关联连接)方式连接的两个表之间的记录可以是“一对一”.“多对一”.“一对多”的关系 Joi ...

  7. 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取

    1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False)  -->> axis=1是按行来 ...

  8. pandas合并/连接

    Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似.Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 - pd.me ...

  9. pandas的合并、连接、去重、替换

    import pandas as pd import numpy as np # merge合并 ,类似于Excel中的vlookup df1 = pd.DataFrame({'key': ['K0' ...

随机推荐

  1. Zuul的使用,路由访问映射规则

    一.Zuul的介绍 Zuul包含了对请求的路由和过滤两个最主要的功能: 其中路由功能负责将外部请求转发到具体的微服务实力上,是实现外部访问统一入口基础而过滤器功能则负责对请求的处理过程进行干预,是实现 ...

  2. python3 字符和数字(ASC码)转换

    print(ord('b')) print(ord('B')) print(chr(98)) print(chr(66)) 结果:98 66 b B 也可以数字转ASC码,原理一样,如下(结果就不输出 ...

  3. app 崩溃测试 (转:CSDN 我去热饭)

    首先,崩溃有几种情况: 闪退 提示停止运行 无响应 ( 不同情况虽然没有严格意义上区分开引起原因,但是都有侧重.在之后的工作中,我会实时补充统计.) 1.接口返回值 [直接原因]:app无法解析接口返 ...

  4. 图解微信小程序---获取电影信息

    图解微信小程序---获取电影信息 代码笔记 第一步:编写js文件,调用api获取相对应电影详情信息(注意带入的参数是id不在是榜单的type,电影api的movie后面又斜杠,别忘了,对应的绑定数据的 ...

  5. webapi处理OPTIONS请求

    报错1信息 Access to XMLHttpRequest at 'http://localhost:4445/api/v/getmsg' from origin 'http://localhost ...

  6. Flutter实体与JSON解析的一种方法

    vs code作为编辑器 1. 首先,json对象与字符串的转换是使用json.encode和json.decode的,需要导入import 'dart:convert'; 这里主要的自然不是这个,而 ...

  7. javascript(六)运算符

    运算符概述 JavaScript中的运算符用于算术表达式. 比较表达式. 逻辑表达式. 赋值表达式等.需要注意的是, 大多数运算符都是由标点符号表示的, 比如 "+" 和" ...

  8. css3+JS实现幻灯片轮播图

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. App过大

    最近开发中遇到一个报错信息 如下 Error:Cannot fit requested classes in a single dex file.Try supplying a main-dex li ...

  10. Kubernetes学习之pause容器

    根据代码看到,pause容器运行着一个非常简单的进程,它不执行任何功能,一启动就永远把自己阻塞住了, 它的作用就是扮演PID1的角色,并在子进程称为"孤儿进程"的时候,通过调用wa ...