【题解】物流运输 [ZJ2006] [P1772] [BZOJ1003]

传送门:物流运输 \([ZJ2006]\) \([P1772]\) \([BZOJ1003]\)

【题目描述】

给定一个含 \(e\) 条带权边的无向图,每天都需要从结点 \(1\) 走到结点 \(m\),一共要走 \(n\) 天,每天的花费为所经过路径的权值和。一般来说会选择一条路线每天都这样走下去,但某些结点会在连续的几天内都无法经过,这时候就需要改变路线。每次改变路线都有 \(K\) 的额外花费。求最小总花费。

(即:总花费 \(=\) \(n\) 天经过路径花费和 \(+\) \(K*\) 改变路径次数)

【输入】

第一行四个整数 \(n,m,K,e\),后面 \(e\) 行表示每条边所连接的结点编号和边权。接下来一个整数 \(T\) 表示有 \(T\) 个结点会在某一时段无法通过,后面每行三个整数分别表示节点编号,无法通过的天数起点和终点。

【输出】

一个整数表示最小花费。

【样例】

样例输入:
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5 样例输出:
32

【数据范围】

\(100\%\) \(1 \leqslant N \leqslant 100,\) \(1 \leqslant m \leqslant 20\)


【分析】

暂时先不考虑如何计算路径花费的问题,就先视作 \(w\) 好了。

很明显,状态转移的切入点在于路径的改变。用 \(dp[i]\) 表示走完前 \(i\) 天所需最小花费,设最后一次改变路径后使用的天数为 \([j+1,i]\),那么 \(dp[i]=min\{dp[j]+K+w*(i-j)\}\) 。

一开始看到这个式子还以为是斜率优化,但实际上并不需要,这么良心的数据直接暴力就能过。

求 \(w\) 可以使用 \(dijkstra\) 或者 \(SPFA\),不能走的结点就提前记录一下。可以用 \(no[i][j]\) 表示 \(i\) 在 \(j\) 这天不可走,转移状态时倒序枚举 \(j\)。由于 \(j+1\) 这天不可经过的点在 \(j\) 这天还是不可经过,这样做就可以省掉一些麻烦。

另外,如果 \(inf\) 设太大的话,两个 \(inf\) 相乘会爆 \(long\) \(long\),要特判一下。

初始化有两种方法:\(dp[i]=w*i(i \in [1,n])\) 或者 \(dp[0]=-K\),如果是后者,在第 \(0\) 天后改变路径并加上 \(K\) 的花费,实际上就是 \(0\) 花费选出了第一条路径。

时间复杂度为:\(O(n^2mlogm)\) 。


【Code】

#include<algorithm>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register LL
using namespace std;
const LL N=103,M=403,inf=1e18;
LL n,m,e,o,x,y,z,K,to,dp[N],dis[N],pan[N],can[N],head[N],no[N][N];
struct QAQ{LL w,to,next;}a[M<<1];
struct QWQ{LL x,d;inline bool operator<(QWQ o)const{return d>o.d;}};
priority_queue<QWQ>Q;
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
inline void add(Re x,Re y,Re z){a[++o].to=y,a[o].w=z,a[o].next=head[x],head[x]=o;}
inline LL dijkstra(){
for(Re i=0;i<=m;++i)pan[i]=0;
for(Re i=0;i<=m;++i)dis[i]=inf;
pan[1]=0,Q.push((QWQ){1,dis[1]=0});
while(!Q.empty()){
x=Q.top().x,Q.pop();
if(pan[x]||can[x])continue;
pan[x]=1;
for(Re i=head[x];i;i=a[i].next)
if(dis[to=a[i].to]>dis[x]+a[i].w){
dis[to]=dis[x]+a[i].w;
Q.push((QWQ){to,dis[to]});
}
}
return dis[m];
}
int main(){
in(n),in(m),in(K),in(e);
while(e--)in(x),in(y),in(z),add(x,y,z),add(y,x,z);
in(e);
while(e--){
in(x),in(y),in(z);
for(Re i=y;i<=z;++i)no[x][i]=1;
}
for(Re i=0;i<=n;++i)dp[i]=inf;dp[0]=-K;
for(Re i=1;i<=n;++i){
for(Re k=1;k<=m;++k)can[k]=0;
for(Re j=i-1;j>=0;--j){
for(Re k=1;k<=m;++k)can[k]|=no[k][j+1];
Re tmp=dijkstra();
if(tmp!=inf)dp[i]=min(dp[i],dp[j]+K+(i-j)*tmp);
}
}
printf("%lld",dp[n]);
}

【题解】物流运输 [ZJ2006] [P1772] [BZOJ1003]的更多相关文章

  1. 【BZOJ1003】物流运输(动态规划,最短路)

    [BZOJ1003]物流运输(动态规划,最短路) 题面 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司 ...

  2. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  3. [luogu] P1772 [ZJOI2006]物流运输(动态规划,最短路)

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  4. bzoj1003物流运输 最短路+DP

    bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...

  5. BZOJ 1003 物流运输 题解 【SPFA+DP】

    BZOJ 1003 物流运输 题解 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的 ...

  6. BZOJ1003: [ZJOI2006] 物流运输 trans

    物流运输--看了神犇的题解,就是dp+最短路,设f[i]为1~i天的最少花费,那么 dp[i]=min(cost[1,i],min{dp[j]+cost[j+1,i]+K,1≤j<i}) 就是从 ...

  7. 洛谷P1772 [ZJOI2006]物流运输

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  8. bzoj1003: [ZJOI2006]物流运输(DP+spfa)

    1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...

  9. 【BZOJ1003】【ZJOI2006】物流运输

    1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2556  Solved: 1008[Submit] ...

随机推荐

  1. 电信NBIOT 1 - 数据上行(中国电信开发者平台对接流程)

    电信NBIOT 1 - 数据上行(中国电信开发者平台对接流程) 电信NBIOT 2 - 数据上行(中间件获取电信消息通知) 电信NBIOT 3 - 数据下行 电信NBIOT 4 - NB73模块上行测 ...

  2. 【Tomcat】Web应用的目录结构

    创建时间:6.14 Web应用的目录结构 .xml文件不用自己写,抄头抄尾就可以 (别人的) (抄头抄尾) *注意:WEB-INF目录是受保护的,外界不能直接访问 如果访问WEB-INF目录下的htm ...

  3. 机器学习——k-均值算法(聚类)

    文章目录 k-均值(k-means)聚类 1.k-均值算法 2.k-均值算法的代价函数 3.k-均值算法步骤 4.初始化聚类中心点和聚类个数 5.sklearn实现k-means算法 k-均值(k-m ...

  4. clickjacking 攻击

    文章:Web安全之点击劫持(ClickJacking) 点击劫持(ClickJacking)是一种视觉上的欺骗手段.大概有两种方式,一是攻击者使用一个透明的iframe,覆盖在一个网页上,然后诱使用户 ...

  5. NiFi使用总结 一 hive到hive的PutHiveStreaming processor和SelectHiveQL

    我说实话,NiFi的坑真的挺多的... 1.PutHiveStreaming processor的使用 具体配置可参考:https://community.hortonworks.com/articl ...

  6. Python基础之函数定义及文件修改

    函数 函数的定义 #登录函数和注册函数 def register(): """注册函数""" username = input('请输入你的 ...

  7. python输出带颜色字体

    方法1: (参考https://suixinblog.cn/2019/01/print-colorful.html) 使用Python中自带的print输出带有颜色或者背景的字符串 书写语法 prin ...

  8. flask ORM创建

    安装SQLAlchemy pip3 install sqlalchemy Flask需要使用 flask-sqlalchemy 支持包 pip3 install flask-sqlalchemy 创建 ...

  9. django ORM CRUD

    一.增加数据-Create 1.类名.objects.create(属性=值,属性=值) Myomodel.objects.create(name=) 2.d={"属性":&quo ...

  10. Expect Command And How To Automate Shell Scripts Like Magic

    In the previous post, we talked about writing practical shell scripts and we saw how it is easy to w ...