P4568 飞行路线 分层图最短路

分层图最短路

问题模型

求最短路时,可有\(k\)次更改边权(减为0)

思路

在普通求\(Dijkstra\)基础上,\(dis[x][j]\)多开一维\(j\)以存已用了多少次机会,然后每次松弛时,做完普通松弛操作后,还要使用一次机会(如果可以),类同\(DP\)。

每次普通松弛:

\[dis[to][j]=min\{dis[cur][j], dis[to][j]\}
\]

如果还可以使用(\(j<k\)):

\[dis[to][j+1] = min\{dis[cur][j], dis[to][j+1]\}
\]

AC Code:

#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
#define MAXN 10010
#define MAXK 11
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,m,k,s,e;
bool vis[MAXN][MAXK];
struct edge{
int v,w;
edge(int v, int w):v(v),w(w){}
};
vector <edge> mp[MAXN];
struct item{
int dis, k, v;
item(int dis, int k, int v):dis(dis), k(k), v(v){}
bool operator < (const item a) const{
return dis > a.dis;
}
};
int dis[MAXN][MAXK];
priority_queue <item> q;
void Dij(){
memset(dis, 0x3f, sizeof(dis));
dis[s][0]=0;
q.push(item(0,0,s));
while(!q.empty()){
item cur = q.top();q.pop();
if(vis[cur.v][cur.k]) continue;
vis[cur.v][cur.k] = 1;
for(register int i=0;i<mp[cur.v].size();++i){
int v = mp[cur.v][i].v, w = mp[cur.v][i].w;
if(cur.k<k&&!vis[v][cur.k+1]&&dis[v][cur.k+1]>dis[cur.v][cur.k]){ // 使用机会
dis[v][cur.k+1] = dis[cur.v][cur.k];
q.push(item(dis[v][cur.k+1], cur.k+1, v));
}
if(!vis[v][cur.k]&&dis[v][cur.k]>dis[cur.v][cur.k]+w){ // 普通松弛
dis[v][cur.k] = dis[cur.v][cur.k]+w;
q.push(item(dis[v][cur.k], cur.k, v));
}
}
}
}
int main()
{
scanf("%d %d %d %d %d", &n, &m, &k, &s, &e),s++,e++;
for(int i=1;i<=m;++i){
int a,b,c;
scanf("%d %d %d", &a, &b, &c),++a,++b;
mp[a].push_back(edge(b,c));
mp[b].push_back(edge(a,c));
}
Dij();
int ans=0x3ffffff;
for(int i=0;i<=k;++i)
ans = MIN(ans, dis[e][i]); // 遍历统计答案,机会不一定用完
printf("%d", ans);
return 0;
}

P4568 飞行路线 分层图最短路的更多相关文章

  1. bzoj2763 [JLOI]飞行路线 分层图最短路

    问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  2. P4568 [JLOI2011]飞行路线 分层图最短路

    思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  3. BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)

    题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...

  4. [JLOI2011]飞行路线 分层图最短路

    题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...

  5. 【bzoj2763】[JLOI2011]飞行路线 分层图最短路

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  6. bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

  7. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  8. [JLOI2011]飞行路线 (分层图,最短路)

    题目链接 Solution 建立 \(k+1\) 层图跑 \(Dijkstra\) 就好了. Code #include<bits/stdc++.h> #define ll long lo ...

  9. [bzoj2763][JLOI2011]飞行路线——分层图最短路

    水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...

随机推荐

  1. git 学习笔记 ---安装

    Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一). 安装Git 在Linux上安装Git 首先,你可以试着输入git,看看系统有没有安装Git: $ git The progr ...

  2. go liteIDE 快捷键

    Goland常用快捷键文件相关快捷键: CTRL+E,打开最近浏览过的文件.CTRL+SHIFT+E,打开最近更改的文件.CTRL+N,可以快速打开struct结构体.CTRL+SHIFT+N,可以快 ...

  3. 贴一个markdown语法,mweb自带的说明

    Markdown 语法和 MWeb 写作使用说明 Markdown 的设计哲学 Markdown 的目標是實現「易讀易寫」.不過最需要強調的便是它的可讀性.一份使用 Markdown 格式撰寫的文件應 ...

  4. (二) Windows 进行 Docker CE 安装(Docker Desktop)

    参考并感谢 官方文档: https://docs.docker.com/docker-for-windows/install/ 下载地址 https://download.docker.com/win ...

  5. 把时间戳转换为 datatime 格式

    使用time timeStamp = 1381419600 timeArray = time.localtime(timeStamp) otherStyleTime = time.strftime(& ...

  6. angular异步获取数据后在ngOnInit中无法获取,显示undefined解决办法

    两种方法 1 通过*ngif动态加载要数据渲染的dom 2 通过路由导航resolve 第一种感觉太麻烦了,要是一个页面请求多个接口,那就不得不写多个*ngif,本人还是更倾向与第二种发法 具体步骤: ...

  7. Jmeter学习笔记(七)——监听器元件之察看结果树

    在jmeter中,如果我们需要查看请求结果就需要添加查看结果树,这个监听器元件有那些功能呢? 一.察看结果树界面如下 二.察看结果树界面功能说明 1.所有数据写入文件 (1)文件名:可以通过浏览,选择 ...

  8. java web编程 servlet读取配置文件参数

    新建一个servlet. 然后在web.xml文件里面自动帮助你创建好了<servlet-name><servlet-class><servlet-mapping> ...

  9. Linux关闭防火墙、设置端口

    关闭防火墙 1)重启后生效 开启: chkconfig iptables on 关闭: chkconfig iptables off 验证防火墙是否关闭:chkconfig --list |grep ...

  10. 关于元素间的边距重叠问题与BFC

    一.边距重叠常见情况 1.垂直方向上相邻元素的重叠 (水平方向上不会发生重叠) 2. 垂直方向上父子元素间的重叠 二.BFC 1.什么是 BFC BFC(Block Formatting Contex ...