有两个性质需要知道:

$1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$

其中 $fib[i]$ 为第 $i$ 项斐波那契数列.

$2$. 对于任意满足上述条件的数列,都有 $\sum_{i=1}^{n}f[i]=f[n+2]-f[2]$

$3.$ 任意两断满足上述条件的数列每一项依次叠加,依然满足 $g[i]=g[i-1]+g[i-2]$,且上述两个性质都满足.

$4.$ 任何一段斐波那契数列也满足上述所有性质.

有了上述预备知识后,再考虑这道题:

我们用线段树来维护区间和,线段树上每个节点维护 $3$ 个信息,为 $sum,f1,f2$

即节点所维护的区间和,以及该节点及线段树中区间要加上一个前两项为 $f1,f2$ 的上述递推数列.

那么,我们只需考虑如何下传标记,如何查询即可.

假设当前节点已经有了 $f1,f2$,那么将标记下传给左子树是轻松的:直接下传即可,区间和的贡献可按照上述公式 $O(1)$ 求出.

而如果要下传给右儿子的话就不能直接传了,因为右儿子区间开头的两项并不是 $f1,f2$.

而根据上述三条性质,我们知道斐波那契数列的任何一段也是斐波那契数列.

所以,直接算出右儿子的 $f1,f2$ 即 $f1\times fib[mid-l]+f2\times fib[mid-l+1]$ 与 $f1\times fib[mid-l+1]+f2\times fib[mid-l+2]$

然后还知道 $f1,f2$ 都满足叠加性,所以直接叠加到左右儿子的 $f1,f2$ 上即可.

#include <bits/stdc++.h>
#define N 400004
#define LL long long
#define lson now<<1
#define rson now<<1|1
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
const LL mod=1000000009;
int n,m;
LL fib[N<<1],sum[N<<1];
struct node
{
LL f1,f2,sum;
int l,r,len;
}t[N<<2];
void build(int l,int r,int now)
{
t[now].l=l;
t[now].r=r;
t[now].len=r-l+1;
if(l==r) return ;
int mid=(l+r)>>1;
if(l<=mid) build(l,mid,lson);
if(r>mid) build(mid+1,r,rson);
}
void mark(int now,LL f1,LL f2)
{
(t[now].f1+=f1)%=mod;
(t[now].f2+=f2)%=mod;
(t[now].sum+=f1*fib[t[now].len]%mod+f2*fib[t[now].len+1]%mod-f2+mod)%=mod;
}
void pushup(int now)
{
t[now].sum=(t[lson].sum+t[rson].sum)%mod;
}
void pushdown(int now)
{
if(t[now].f1==0&&t[now].f2==0) return;
int mid=(t[now].l+t[now].r)>>1;
mark(lson,t[now].f1,t[now].f2);
if(t[now].r>mid)
mark(rson,t[now].f1*fib[t[lson].len-1]%mod+t[now].f2*fib[t[lson].len]%mod,t[now].f1*fib[t[lson].len]%mod+t[now].f2*fib[t[lson].len+1]%mod);
t[now].f1=t[now].f2=0;
}
void update(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
mark(now,fib[l-L+1],fib[l-L+2]);
return;
}
pushdown(now);
int mid=(l+r)>>1;
if(L<=mid) update(l,mid,lson,L,R);
if(R>mid) update(mid+1,r,rson,L,R);
pushup(now);
}
LL query(int l,int r,int now,int L,int R)
{
if(l>=L&&r<=R)
{
return t[now].sum;
}
pushdown(now);
int mid=(l+r)>>1;
LL re=0ll;
if(L<=mid) re+=query(l,mid,lson,L,R);
if(R>mid) re+=query(mid+1,r,rson,L,R);
return re%mod;
}
int main()
{
// setIO("input");
int i,j;
scanf("%d%d",&n,&m);
fib[1]=fib[2]=1;
for(i=3;i<N;++i) fib[i]=(fib[i-1]+fib[i-2])%mod;
for(i=1;i<=n;++i) scanf("%lld",&sum[i]), (sum[i]+=sum[i-1])%=mod;
build(1,n,1);
for(i=1;i<=m;++i)
{
int opt,l,r;
scanf("%d%d%d",&opt,&l,&r);
if(opt==1) update(1,n,1,l,r);
else printf("%lld\n",(query(1,n,1,l,r)+sum[r]-sum[l-1]+mod*2)%mod);
}
return 0;
}

  

CF446C DZY Loves Fibonacci Numbers 线段树 + 数学的更多相关文章

  1. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  2. codeforces 446C DZY Loves Fibonacci Numbers 线段树

    假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...

  3. Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]

    洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...

  4. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  5. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

  6. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  7. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  8. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  9. Codeforces 446C —— DZY Loves Fibonacci Numbers(线段树)

    题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是 ...

随机推荐

  1. Form' threw an exception of type 'System.InvalidOperationException'

    环境:VS2017 NetCore 2.2 Razor Layui 在处理异步请求是遇到"((Microsoft.AspNetCore.Http.Internal.DefaultHttpRe ...

  2. 使用jQuery开发tree插件

    1.插件截图 2.插件使用 首先引入jquery库,然后引入tree.js.tree.css文件,如下: <script type="text/javascript" src ...

  3. String 字符串的==和eqauls区别

    1.对于基本类型来说,==比较的是数据的值,equals方法也是数据的值: 对于引用类型来说,==比较的是引用的地址,equals方法比较的是对象的内容. 2.String是引用类型,用“=”创建字符 ...

  4. VS2017 配置 boost_1_70

    1. 下载与安装 1.1 安装方法1 (1) 下载 https://www.boost.org/ 或者使用 https://sourceforge.net/projects/boost/files/b ...

  5. Part_three:Redis持久化存储

    redis持久化存储 Redis是一种内存型数据库,一旦服务器进程退出,数据库的数据就会丢失,为了解决这个问题,Redis提供了两种持久化的方案,将内存中的数据保存到磁盘中,避免数据的丢失. 1.RD ...

  6. Objective-C学习笔记 利用协议实现回调函数

    来源:http://mobile.51cto.com/iphone-278354.htm Objective-C学习笔记 利用协议实现回调函数是本文要介绍的内容,主要是实现一个显示文字为测试的视图,然 ...

  7. python实战项目

    没有一个完整的项目开发过程,是不会对整个开发流程以及理论知识有牢固的认知的,对于怎样将所学的理论知识应用到实际开发中更是不得而知了! 以上就是我们在学习过程中必须要有项目实战开发经验的原因,其实无论项 ...

  8. Python七大原则,24种设计模式

    七大设计原则:1.单一职责原则[SINGLE RESPONSIBILITY PRINCIPLE]:一个类负责一项职责.2.里氏替换原则[LISKOV SUBSTITUTION PRINCIPLE]:继 ...

  9. Mysql 存储过程 + python调用存储过程 (内置函数讲解及定义摘抄)

    定义 存储过程:就是为以后的使用而保存的一条或多条 MySQL语句的集合.可将其视为批文件,虽然它们的作用不仅限于批处理. 个人使用存储过程的原因就是因为 存储过程比使用单独的SQL语句要快 有如下表 ...

  10. Java中数组的定义,初始化和使用

    定义:数组是数据类型相同的,用一个标志符名称封装在一起的一个对象序列或基本类型数据序列(一组相同数据类型元素的集合,并且分配一块连续的内存来存储). 格式:int[] a1(常用)  或者 int a ...