A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

Credits:
Special thanks to @stellari for adding this problem, creating these two awesome images and all test cases.

如果按照矩形来处理将会非常麻烦,可以把这些矩形拆成两个点,一个左上顶点,一个右上顶点,这个题相当于处理2*n个边的问题,每一个边有一个x-axis和一个height,把所给的triplet转换成[x-axis, height],对这些顶点按x-axis排序。然后开始遍历这些点,用一个最大堆来记录高度,对于左顶点,将height加入堆中。对于右顶点,从堆中移出height,同时也意味这这个矩形的结束。堆顶是所有顶点中最高的点,是当前图形的最高位置。只要这个点没被移出堆,说明这个最高的矩形还没结束。如果堆顶高度值出现了变化,说明出现了拐点,记录相应位置到结果中。

具体代码中,为了在排序后的顶点列表中区分左右顶点,同一个图形的左右顶点height一个是正数值,一个是负数值。

(1) 自建一个名为Height的数据结构,保存一个building的index和height。约定,当height为负数时表示这个高度为height的building起始于index;height为正时表示这个高度为height的building终止于index。

(2) 对building数组进行处理,每一行[ Li, Ri, Hi ],根据Height的定义,转换为两个Height的对象,即,Height(Li, -Hi) 和 Height(Ri, Hi)。 将这两个对象存入heights这个List中。

(3) 写个Comparator对heights进行升序排序,首先按照index的大小排序,若index相等,则按height大小排序,以保证一栋建筑物的起始节点一定在终止节点之前。

(4) 将heights转换为结果。使用PriorityQueue对高度值进行暂存。遍历heights,遇到高度为负值的对象时,表示建筑物的起始节点,此时应将这个高度加PriorityQueue。遇到高度为正值的对象时,表示建筑物的终止节点,此时应将这个高度从PriorityQueue中除去。且在遍历的过程中检查,当前的PriorityQueue的peek()是否与上一个iteration的peek()值(prev)相同,若否,说明出现了拐点,则应在结果中加入[当前对象的index, 当前PriorityQueue的peek()],并更新prev的值。

Java:

class Edge {
int x;
int height;
boolean isStart; public Edge(int x, int height, boolean isStart) {
this.x = x;
this.height = height;
this.isStart = isStart;
}
} public List<int[]> getSkyline(int[][] buildings) {
List<int[]> result = new ArrayList<int[]>(); if (buildings == null || buildings.length == 0
|| buildings[0].length == 0) {
return result;
} List<Edge> edges = new ArrayList<Edge>(); // add all left/right edges
for (int[] building : buildings) {
Edge startEdge = new Edge(building[0], building[2], true);
edges.add(startEdge);
Edge endEdge = new Edge(building[1], building[2], false);
edges.add(endEdge);
} // sort edges
Collections.sort(edges, new Comparator<Edge>() {
public int compare(Edge a, Edge b) {
if (a.x != b.x)
return Integer.compare(a.x, b.x); if (a.isStart && b.isStart) {
return Integer.compare(b.height, a.height);
} if (!a.isStart && !b.isStart) {
return Integer.compare(a.height, b.height);
} return a.isStart ? -1 : 1;
}
}); // process edges
PriorityQueue<Integer> heightHeap = new PriorityQueue<Integer>(10, Collections.reverseOrder()); for (Edge edge : edges) {
if (edge.isStart) {
if (heightHeap.isEmpty() || edge.height > heightHeap.peek()) {
result.add(new int[] { edge.x, edge.height });
}
heightHeap.add(edge.height);
} else {
heightHeap.remove(edge.height); if(heightHeap.isEmpty()){
result.add(new int[] {edge.x, 0});
}else if(edge.height > heightHeap.peek()){
result.add(new int[]{edge.x, heightHeap.peek()});
}
}
} return result;
}  

Java:

public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
List<int[]> result = new ArrayList<int[]>();
if (buildings == null || buildings.length == 0 || buildings[0].length == 0) {
return result;
} List<Height> heights = new ArrayList<Height>();
for (int[] building : buildings) {
heights.add(new Height(building[0], -building[2]));
heights.add(new Height(building[1], building[2]));
}
Collections.sort(heights, new Comparator<Height>() {
@Override
public int compare(Height h1, Height h2) {
return h1.index != h2.index ? h1.index - h2.index : h1.height - h2.height;
}
}); PriorityQueue<Integer> pq = new PriorityQueue<Integer>(1000, Collections.reverseOrder());
pq.offer(0);
int prev = 0;
for (Height h : heights) {
if (h.height < 0) {
pq.offer(-h.height);
} else {
pq.remove(h.height);
}
int cur = pq.peek();
if (cur != prev) {
result.add(new int[]{h.index, cur});
prev = cur;
}
} return result;
} class Height {
int index;
int height;
Height(int index, int height) {
this.index = index;
this.height = height;
}
}
}

Python:

class Solution(object):
def getSkyline(self, buildings):
n = len(buildings)
points = sorted([(buildings[i][0], buildings[i][2], 's') for i in range(n)] +
[(buildings[i][1], buildings[i][2], 'e') for i in range(n)])
print points
result, maxHeap = [], []
for p in points:
pre_height = - maxHeap[0] if maxHeap else 0
if p[2] == 's':
heappush(maxHeap, -p[1])
else:
heappop(maxHeap)
cur_height = - maxHeap[0] if maxHeap else 0 if p[2] == 's' and p[1] > pre_height:
result.append([p[0], p[1]])
elif p[2] == 'e' and p[1] > cur_height:
result.append([p[0], cur_height]) return result

Python:

from heapq import heappush, heappop
import functools class Edge(object):
def __init__(self, x, height, is_start):
self.x = x
self.height = height
self.is_start = is_start def __repr__(self):
return repr((self.x, self.height, self.is_start)) class Solution1(object):
def compare(self, edge1, edge2):
if edge1.x != edge2.x:
return -1 if edge1.x < edge2.x else 1 if ((edge1.is_start and edge2.is_start) or
(not edge1.is_start and not edge2.is_start)):
return -1 if edge1.height < edge2.height else 1 return -1 if edge1.is_start else 1 def getSkyline(self, buildings):
edges = []
for building in buildings:
start_edge = Edge(building[0], building[2], True)
end_edge = Edge(building[1], building[2], False)
edges.extend((start_edge, end_edge))
sorted_edges = sorted(edges, key=functools.cmp_to_key(self.compare))
print sorted_edges
maxHeap, result = [], []
for edge in sorted_edges:
if edge.is_start:
if not maxHeap or edge.height > - maxHeap[0]:
result.append((edge.x, edge.height))
heappush(maxHeap, - edge.height)
else:
heappop(maxHeap)
if not maxHeap:
result.append((edge.x, 0))
elif edge.height > - maxHeap[0]:
result.append((edge.x, - maxHeap[0])) return result

Python:

class MaxHeap:
def __init__(self, buildings):
self.buildings = buildings
self.size = 0
self.heap = [None] * (2 * len(buildings) + 1)
self.lineMap = dict()
def maxLine(self):
return self.heap[1]
def insert(self, lineId):
self.size += 1
self.heap[self.size] = lineId
self.lineMap[lineId] = self.size
self.siftUp(self.size)
def delete(self, lineId):
heapIdx = self.lineMap[lineId]
self.heap[heapIdx] = self.heap[self.size]
self.lineMap[self.heap[self.size]] = heapIdx
self.heap[self.size] = None
del self.lineMap[lineId]
self.size -= 1
self.siftDown(heapIdx)
def siftUp(self, idx):
while idx > 1 and self.cmp(idx / 2, idx) < 0:
self.swap(idx / 2, idx)
idx /= 2
def siftDown(self, idx):
while idx * 2 <= self.size:
nidx = idx * 2
if idx * 2 + 1 <= self.size and self.cmp(idx * 2 + 1, idx * 2) > 0:
nidx = idx * 2 + 1
if self.cmp(nidx, idx) > 0:
self.swap(nidx, idx)
idx = nidx
else:
break
def swap(self, a, b):
la, lb = self.heap[a], self.heap[b]
self.lineMap[la], self.lineMap[lb] = self.lineMap[lb], self.lineMap[la]
self.heap[a], self.heap[b] = lb, la
def cmp(self, a, b):
return self.buildings[self.heap[a]][2] - self.buildings[self.heap[b]][2] class Solution:
def getSkyline(self, buildings):
size = len(buildings)
points = sorted([(buildings[x][0], x, 's') for x in range(size)] +
[(buildings[x][1], x, 'e') for x in range(size)])
maxHeap = MaxHeap(buildings)
ans = []
for p in points:
if p[2] == 's':
maxHeap.insert(p[1])
else:
maxHeap.delete(p[1])
maxLine = maxHeap.maxLine()
height = buildings[maxLine][2] if maxLine is not None else 0
if len(ans) == 0 or ans[-1][0] != p[0]:
ans.append([p[0], height])
elif p[2] == 's':
ans[-1][1] = max(ans[-1][1], height)
else:
ans[-1][1] = min(ans[-1][1], height)
if len(ans) > 1 and ans[-1][1] == ans[-2][1]:
ans.pop()
return ans

C++: heap

class Solution {
private:
enum NODE_TYPE {LEFT, RIGHT};
struct node {
int x, y;
NODE_TYPE type;
node(int _x, int _y, NODE_TYPE _type) : x(_x), y(_y), type(_type) {}
}; public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<node> height;
for (auto &b : buildings) {
height.push_back(node(b[0], b[2], LEFT));
height.push_back(node(b[1], b[2], RIGHT));
}
sort(height.begin(), height.end(), [](const node &a, const node &b) {
if (a.x != b.x) return a.x < b.x;
else if (a.type == LEFT && b.type == LEFT) return a.y > b.y;
else if (a.type == RIGHT && b.type == RIGHT) return a.y < b.y;
else return a.type == LEFT;
}); priority_queue<int> heap;
unordered_map<int, int> mp;
heap.push(0);
vector<pair<int, int>> res;
int pre = 0, cur = 0;
for (auto &h : height) {
if (h.type == LEFT) {
heap.push(h.y);
} else {
++mp[h.y];
while (!heap.empty() && mp[heap.top()] > 0) {
--mp[heap.top()];
heap.pop();
}
}
cur = heap.top();
if (cur != pre) {
res.push_back({h.x, cur});
pre = cur;
}
}
return res;
}
};  

C++: Multiset

class Solution {
public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<pair<int, int>> h, res;
multiset<int> m;
int pre = 0, cur = 0;
for (auto &a : buildings) {
h.push_back({a[0], -a[2]});
h.push_back({a[1], a[2]});
}
sort(h.begin(), h.end());
m.insert(0);
for (auto &a : h) {
if (a.second < 0) m.insert(-a.second);
else m.erase(m.find(a.second));
cur = *m.rbegin();
if (cur != pre) {
res.push_back({a.first, cur});
pre = cur;
}
}
return res;
}
};

 

类似题目:

[LintCode] 131. Building Outline

All LeetCode Questions List 题目汇总

[LeetCode] 218. The Skyline Problem 天际线问题的更多相关文章

  1. LeetCode 218. The Skyline Problem 天际线问题(C++/Java)

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  2. [LeetCode] 281. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. [LeetCode#218] The Skyline Problem

    Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...

  4. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  5. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  6. 218. The Skyline Problem (LeetCode)

    天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...

  7. 218. The Skyline Problem

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  8. 218. The Skyline Problem *HARD* -- 矩形重叠

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  9. [LeetCode] The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. python代码安全扫描工具

    python代码安全扫描工具:Coverity. Fortify.SecMissile(漏扫,对源代码提供基于语义的搜索和分析能力,实现已知安全漏洞的快速扫描)

  2. django 进行语言的国际化及在后台进行中英文切换

    项目的部署地为: 中国大陆与美国东海岸, 两个地区的服务器数据不进行同步, 中国地区的服务器页面展示中文, 美国地区的服务器页面展示成英文, 项目后台使用python编程语言进行开发, 并结合djan ...

  3. linux中如何升级Python

    一.使用wget 下载Python 安装包 我是在虚拟中当中安装的: wget http://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz 报错: ...

  4. janusgraph-图数据库的学习(1)

    图数据库的简介-来源百度百科 1.简介 图形数据库是NoSQL数据库的一种类型,它应用图形理论存储实体之间的关系信息.图形数据库是一种非关系型数据库,它应用图形理论存储实体之间的关系信息.最常见例子就 ...

  5. .net 代码调用cmd执行.exe程序,获取控制台输出信息

    使用.net core 对老项目升级, .net core 使用TripleDES.Create() 加密众iv字节限制 与 framework中的不同, 新项目还需要兼容老项目版本,还不想通过web ...

  6. 过滤器的API

    1.API a.生命周期(和servletcontext相似): (1)创建:服务器启动的时候创建(执行init方法). (2)销毁:服务器关闭的时候销毁(执行destory方法). b.filter ...

  7. Linux 系统管理——服务器RAID及配置实战

    RAID称为廉价磁盘冗余阵列.RAID的基本想法是把多个便宜的小磁盘组合在一起.成为一个磁盘组,使性能达到或超过一个容量巨大.价格昂贵的磁盘. 2.级别介绍 RAID 0连续以位或字节为单位分割数据, ...

  8. 75: libreoj #10028 双向宽搜

    $des$ 实现一个bfs $sol$ 写了一个双向bfs #include <bits/stdc++.h> using namespace std; #define Rep(i, a, ...

  9. Idea 编译项目异常 Error:java: Compilation failed: internal java compiler error

  10. python设计模式---绪论

    1.程序只是一个工具,只知道使用工具就有价值的时代正在过去:现在对工作质量.开发速度及完美程度都很重要了.当前主要的问题是对工具的充分利用,在生活的方方面面,简单任务之所以简单是由于这些任务不需要特殊 ...