[转载] miller rabin
本文转载自https://www.cnblogs.com/zsq259/p/11602175.html
Miller-Rabin
事先声明,因为菜鸡Hastin知识水平有限就是菜,因此语言可能不是特别规范,仅供理解.
step 0
问一个数\(p\)是否为质数,\(p<=10^{18}\).
一个简单暴力的办法是\(O( \sqrt{n})\)枚举约数.
然而显然会炸.
于是我们就有了Miller-Rabin.
讲了好多废话...
step 1
首先了解一下费马小定理:
若\(p\)为质数,则对于\(a\in[1,p-1]\)有\(a^{p}\equiv a(Mod\) \(p)\)
那么就有\(a^{p-1} \equiv 1( Mod\) \(p)\)
下面我们用数学归纳法来证明一下费马小定理:
显然\(a=1\)时结论成立,
若\(a=n\)时结论成立,
当\(a=n+1\)时,有
\((n+1)^p\)\(=\sum_{i=0}^{p}C_{p}^{i}n^{p-i}\)(二项式定理)
那么除了\(n^{p}\)和\(1\)这两项外,
其它的都有一个系数\(C_{p}^{i},i\in[1,p-1]\),所以都能被\(p\)整除.
而\(n^p\equiv n(Mod\) \(p)\),
所以\((n+1)^{p}\equiv n+1(Mod\) \(p)\),结论成立.
所以回到正题,如果对于一个数\(p\),存在\(a \in [1,p-1]\),\(a^{p-1}\not\equiv1(Mod\) \(p)\),则\(p\)一定不是质数.
然而仍然有一些数能够逃掉这种检测,
于是就有了
step 2
二次探测!
对于一个质数\(p\),若\(a \in[1,p-1]\),且\(a^2\equiv1(Mod\) \(p)\),则\(a=1\)或\(a=p-1\).
证明:
若\(a^2\equiv1(Mod\) \(p)\),则\(a^2-1\equiv 0(Mod\) \(p)\)
即\(p|(a+1)(a-1)\).
因为\(p\)为质数,且\(a\in [1,p-1]\),所以只有当\(a=1\)或\(a=p-1\)时上式才成立.
所以反过来想当\(a\)等于其它数时,\(p\)就不是质数了.
step 3
下面再来讲一下具体的实现.
首先大的思路是费马小定理,在中间用二次探测判定.
对于要判定的数\(p\),
设\(u=p-1\),则根据费马小定理有\(a^u\equiv 1(Mod\) \(p)\),\(a\in [1,p-1]\).
然后把\(u\)写成\(d*2^n\)的形式,也就是\((((d^2)^2)^2)^{2...}\)(n个2)
那么从\(d^2\)开始用二次探测判定,
最后再用费马小定理判定就行了.
而时间复杂度是\(O(log_{ \tiny 2}\) \(p)\).
并且一次的失误率是\(\frac{1}{4}\),
那么\(T\)次测试的失误率就是\(4^{-T}\),时间复杂度为\(O(Tlog_{\tiny 2}p)\),能够接受.
并且如果\(n<2^{64}\),只用选取\(a=2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\)测试即可.
code:(似乎要开int128)
#include <iostream>
#include <cstdio>
#include <cstring>
#define int __int128
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
}
int p[101]={2,3,5,7,11,13,17,19,23,29,31,37};
int T,n,tot=12;
inline int fpow(int a,int b,int p){
int ret=1;
for(;b;a=a*a%p,b>>=1) if(b&1) ret=ret*a%p;
return ret;
}
inline bool Miller_Rabin(int n){
if(n<=2){
if(n==2) return 1;
return 0;
}
int u=n-1;
while(!(u%2)) u>>=1;
int d=u;
for(int i=1;i<tot&&p[i]<n;i++){
int x=p[i];u=d;x=fpow(x,u,n);
while(u<n){
int y=fpow(x,2,n);
if(y==1&&x!=1&&x!=n-1) return 0;
x=y;u<<=1;
}
if(x!=1) return 0;
}
return 1;
}
signed main(){
T=read();
while(T--){
n=read();
if(Miller_Rabin(n)) puts("Yes");
else puts("No");
}
return 0;
}
[转载] miller rabin的更多相关文章
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Miller Rabin 详解 && 小清新数学题题解
在做这道题之前,我们首先来尝试签到题. 签到题 我们定义一个函数:\(qiandao(x)\) 为小于等于 x 的数中与 x 不互质的数的个数.要求 \(\sum\limits _{i=l}^r qi ...
- POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- poj 1811 Pallor Rho +Miller Rabin
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- Miller Rabin算法详解
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
随机推荐
- windows版mysql安装
https://blog.csdn.net/ycxzuoxin/article/details/80908447
- 从nsurlsession、Alamofire到moya
更好的理解(抽象).更少的构建(配置).更方便的表达(语言) 一.iOS系统的网络编程(DSL概念) ios缺省的网络编程只是给出了网络编程的基本概念: urlsession.request.resp ...
- sqlserver分布式事务
启动服务中的Distributed Transaction Coodinator后 创建链接服务器ender-pc\subx 设定连接服务器RPC OUT 以及RPC属性为True 实验一下代码 创建 ...
- 前端开发神一样的工具chrome调试技巧
前端开发神一样的工具chrome调试技巧 文章来自 Colin-UED // 与您分享前端开发知识 主页 Javascript HTML CSS NodeJs User Experience FE ...
- C#文件操作之把一个文件复制到另外一个文件夹下
一.文件复制例子如下,具体情况,根据需求扩展. /// <summary> /// /// </summary> /// <param name="srcFol ...
- k-匿名算法
30 November 2019 18:31 人类历史上,除了计算机外从没有一项技术可以在短短的几十年间,能够全方位的影响整个社会的各个领域.技术的发展,少不了许多代人为之的努力.无论是在计算 ...
- C# 查看系统进程
//使用前需要引用 using System.Diagnostics; var processList = Process.GetProcesses().ToList();
- 8.Javascript-map、reduce、filter 等高阶函数
高阶函数 高阶函数是对其他函数进行操作的函数,可以将它们作为参数或通过返回它们.简单来说,高阶函数是一个函数,它接收函数作为参数或将函数作为输出返回. 例如Array.prototype.map,Ar ...
- jQuery绑定事件的四种方式:bind、live、delegate、on
1.jQuery操作DOM元素的绑定事件的四种方式 jQuery中提供了四种事件监听方式,分别是bind.live.delegate.on,对应的解除监听的函数分别是unbind.die.undele ...
- Android Handler类 发送消息-post()和postDelay(), Looper讲解
https://blog.csdn.net/weixin_41101173/article/details/79701832 首先,post和postDelay都是Handler的方法,用以在子线程中 ...