每月交易(一)

Table: Transactions

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| id | int |
| country | varchar |
| state | enum |
| amount | int |
| trans_date | date |
+---------------+---------+
id 是这个表的主键。
该表包含有关传入事务的信息。
state 列类型为 “[”批准“,”拒绝“] 之一。

问题:编写一个 sql 查询来查找每个月和每个国家/地区的事务数及其总金额、已批准的事务数及其总金额。

查询结果格式如下所示:

Transactions table:
+------+---------+----------+--------+------------+
| id | country | state | amount | trans_date |
+------+---------+----------+--------+------------+
| 121 | US | approved | 1000 | 2018-12-18 |
| 122 | US | declined | 2000 | 2018-12-19 |
| 123 | US | approved | 2000 | 2019-01-01 |
| 124 | DE | approved | 2000 | 2019-01-07 |
+------+---------+----------+--------+------------+

Result table:
+----------+---------+-------------+----------------+--------------------+-----------------------+
| month | country | trans_count | approved_count | trans_total_amount | approved_total_amount |
+----------+---------+-------------+----------------+--------------------+-----------------------+
| 2018-12 | US | 2 | 1 | 3000 | 1000 |
| 2019-01 | US | 1 | 1 | 2000 | 2000 |
| 2019-01 | DE | 1 | 1 | 2000 | 2000 |
+----------+---------+-------------+----------------+--------------------+-----------------------+

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/monthly-transactions-i
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

代码一:

  1. select date_format(T.trans_date,'%Y-%m') as month, T.country,
  2. count(*) as trans_total_count,
  3. sum(T.state='approved') as approved_count, # 注意,这里使用sum()函数,不能使用count()函数
  4. sum(amount) as trans_total_amount,
  5. sum((T.state='approved')*amount) as approved_total_amount
  6.  
  7. from Transactions4 T
  8.  
  9. group by month(T.trans_date),T.country
  10. order by month , country desc;

代码二: 和代码以相比,select 语句后有点不同,使用if 判断

  1. select date_format(T.trans_date,'%Y-%m') as month, T.country,
  2. count(*) as trans_total_count,
  3. sum(if(T.state='approved',1,0)) as approved_count, # 注意,这里使用sum()函数,不能使用count()函数
  4. sum(amount) as trans_total_amount,
  5. sum(if(T.state='approved',amount,0)) as approved_total_amount
  6.  
  7. from Transactions4 T
  8.  
  9. group by month(T.trans_date),T.country
  10. order by month , country desc;

每月交易(二)

Transactions 记录表

+----------------+---------+
| Column Name | Type |
+----------------+---------+
| id | int |
| country | varchar |
| state | enum |
| amount | int |
| trans_date | date |
+----------------+---------+
id 是这个表的主键。
该表包含有关传入事务的信息。
状态列是类型为 [approved(已批准)、declined(已拒绝)] 的枚举。

Chargebacks 表

+----------------+---------+
| Column Name | Type |
+----------------+---------+
| trans_id | int |
| charge_date | date |      注:这个题目给的是charge_date,但它定义表检查答案的时候定义的是trans_date,所以代码中chargebacks表中这一列也定义成了trans_date
+----------------+---------+
退单包含有关放置在事务表中的某些事务的传入退单的基本信息。
trans_id 是 transactions 表的 id 列的外键。
每项退单都对应于之前进行的交易,即使未经批准。

问题:编写一个 SQL 查询,以查找每个月和每个国家/地区的已批准交易的数量及其总金额、退单的数量及其总金额。

注意:在您的查询中,给定月份和国家,忽略所有为零的行。

查询结果格式如下所示:

Transactions 表:
+------+---------+----------+--------+------------+
| id | country | state | amount | trans_date |
+------+---------+----------+--------+------------+
| 101 | US | approved | 1000 | 2019-05-18 |
| 102 | US | declined | 2000 | 2019-05-19 |
| 103 | US | approved | 3000 | 2019-06-10 |
| 104 | US | approved | 4000 | 2019-06-13 |
| 105 | US | approved | 5000 | 2019-06-15 |
+------+---------+----------+--------+------------+

Chargebacks 表:
+------------+------------+
| trans_id | trans_date |
+------------+------------+
| 102 | 2019-05-29 |
| 101 | 2019-06-30 |
| 105 | 2019-09-18 |
+------------+------------+

Result 表:
+----------+---------+----------------+-----------------+-------------------+--------------------+
| month | country | approved_count | approved_amount | chargeback_count | chargeback_amount |
+----------+---------+----------------+-----------------+-------------------+--------------------+
| 2019-05 | US | 1 | 1000 | 1 | 2000 |
| 2019-06 | US | 3 | 12000 | 1 | 1000 |
| 2019-09 | US | 0 | 0 | 1 | 5000 |
+----------+---------+----------------+-----------------+-------------------+--------------------+

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/monthly-transactions-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

个人思路:

  1. select distinct a.month, a.country,ifnull(b.approved_count,0) as approved_count, # 加了distinct,是因为最终结果中可能会有重复值
  2. ifnull(b.approved_amount,0) as approved_amount, ifnull(c.chargeback_count,0) as chargeback_count,
  3. ifnull(c.chargeback_amount,0) as chargeback_amount
  4.  
  5. from
  6. (select date_format(T.trans_date,'%Y-%m')as month, T.country as country from Transactions as T # 如这张表中有两个相同的月份和国家,结果中就会产生重复值,在这里加distinct没有太大用途,因为和下面一张表Union时,还会产生重复值,所以是在最终结果中加入distinct关键字
  7. group by month(T.trans_date),T.country
  8. union all
  9. select date_format(C.trans_date,'%Y-%m')as month , T.country as country
  10. from Chargebacks as C join Transactions as T on C.trans_id=T.id
  11. group by month(C.trans_date),T.country) a
  12.  
  13. left join
  14.  
  15. (select date_format(T.trans_date,'%Y-%m') as month ,T.country, count(T.id) as approved_count, sum(T.amount) as approved_amount
  16. from Transactions as T
  17. where T.state='approved'
  18. group by month(T.trans_date) ,T.country) b on a.month=b.month and a.country=b.country
  19.  
  20. left join
  21.  
  22. (select date_format(C.trans_date,'%Y-%m') as month,T.country, count(T.id) as chargeback_count ,sum(T.amount) as chargeback_amount
  23. from Transactions as T join Chargebacks as C on T.id=C.trans_id
  24. group by month(C.trans_date),T.country) c on a.month=c.month and a.country=c.country
  25.  
  26. where isnull(b.approved_count)+isnull(c.chargeback_count)<2 # 判断非零行,当count为0时,对应的amount一定也是0,所以当approved_count和chargeback_count都为0时,使用isnull()函数判断后,这两者相加结果为2,小于2说明,其中一个count有值
  27. order by a.month;

代码分析:

a表:这张表中的月份和country是最全的,是在这张表的基础上进行left join的

PS:group by 字段后面有2个字段,select语句查询2个字段,不要忘记查询country;  因为b表和c表中的country可能完全都不相同,此时使用left join不能得到正确的结果,所以select语句查询时包含country字段,因此,group by字段后面也要添加country分组

  1. select date_format(T.trans_date,'%Y-%m')as month, T.country as country from Transactions as T
  2. group by month(T.trans_date),T.country
  3. union all
  4. select date_format(C.trans_date,'%Y-%m')as month , T.country as country
  5. from Chargebacks as C join Transactions as T on C.trans_id=T.id
  6. group by month(C.trans_date),T.country

运行结果:

b表:

  1. select date_format(T.trans_date,'%Y-%m') as month ,T.country, count(T.id) as approved_count, sum(T.amount) as approved_amount
  2. from Transactions as T
  3. where T.state='approved'
  4. group by month(T.trans_date) ,T.country

运行结果:

c表:

  1. select date_format(C.trans_date,'%Y-%m') as month,T.country, count(T.id) as chargeback_count ,sum(T.amount) as chargeback_amount
  2. from Transactions as T join Chargebacks as C on T.id=C.trans_id
  3. group by month(C.trans_date),T.country

运行结果:

万能网友:

  1. select date_format(a.trans_date,"%Y-%m") month,
  2. a.country,
  3. sum(a.sta="approved") approved_count, #这几句只能使用sum()函数,不能使用count()函数
  4. sum((a.sta="approved")*a.amount) approved_amount,
  5. sum(a.sta="backs") chargeback_count,
  6. sum((a.sta="backs")*a.amount) chargeback_amount
  7. from
  8. (select *,"approved" as sta # 添加了一列, 列名sta
  9. from Transactions
  10. where state="approved"
  11. union all
  12. select c.trans_id,t.country,t.state,t.amount,c.trans_date,"backs" as sta #也添加了一列,要注意:列名要和前面添加的相同,都是sta
  13. from Chargebacks c
  14. left join transactions t
  15. on t.id=c.trans_id
  16. ) as a
  17. group by date_format(a.trans_date,"%Y-%m"),a.country
  18. having sum(a.sta="approved")+sum(a.sta="backs")<>0
  19. order by date_format(a.trans_date,"%Y-%m");

代码分析:

中间过程表的格式:

  1. select *,"approved" as sta # 添加了一列, 列名sta
  2. from Transactions
  3. where state="approved"
  4. union all
  5. select c.trans_id,t.country,t.state,t.amount,c.trans_date,"backs" as sta #也添加了一列,要注意:列名要和前面添加的相同,都是sta
  6. from Chargebacks c left join transactions t on t.id=c.trans_id

运行结果:

测试用表:

第一张:

"Transactions":

[[100,"CB","declined",4000,"2019-02-04"]

,[101,"BB","approved",7000,"2019-02-17"]

,[102,"CA","declined",6000,"2019-02-26"]

,[103,"AA","declined",7000,"2019-04-01"]]

"Chargebacks":

[[100,"2019-03-29"],

[102,"2019-02-28"]

,[103,"2019-05-09"]]}}

第二张:这一张是说明最后结果会有重复值,所以在最终结果处加distinct关键字

"Transactions"

:[[101,"US","approved",1000,"2019-05-18"]

,[102,"US","declined",2000,"2019-05-19"],

[103,"US","approved",3000,"2019-06-10"],

[104,"US","declined",4000,"2019-06-13"]

,[105,"US","approved",5000,"2019-06-15"]],

"Chargebacks"

:[[102,"2019-05-29"],

[101,"2019-06-30"],

[105,"2019-09-18"]]}}

第三张表: b表和c表中,使用group by子句时,不要忘了country字段也要分组

"Transactions":

[[100,"BB","declined",2000,"2019-02-25"],

[101,"CA","declined",4000,"2019-02-22"],

[102,"BA","declined",2000,"2019-03-17"]

,[103,"AC","declined",6000,"2019-02-12"]

,[104,"AA","approved",3000,"2019-02-20"]

[105,"AB","declined",7000,"2019-03-22"]],

"Chargebacks

:[[100,"2019-04-26"]

[101,"2019-03-09"],

[103,"2019-03-07"],

[105,"2019-06-12"]]}}

第四张表:

"Transactions"

:[[100,"CB","approved",3000,"2019-04-11"]

,[101,"CC","declined",8000,"2019-04-05"],

[102,"BC","approved",2000,"2019-04-16"],

[103,"BC","approved",6000,"2019-02-18"],

[104,"AA","declined",7000,"2019-04-23"]

,[105,"CA","declined",1000,"2019-03-12"],

[106,"AA","declined",3000,"2019-03-24"],

[107,"CB","declined",2000,"2019-03-24"]],"

Chargebacks"

:[[100,"2019-07-05"]

,[101,"2019-04-15"],

[102,"2019-07-09"],

[103,"2019-03-06"]

,[104,"2019-05-08"]

,[105,"2019-05-12"]

,[106,"2019-04-10"]

,[107,"2019-07-01"]

leetcode 数据库练习 - 1205 每月交易I和II的更多相关文章

  1. Leetcode 137. 只出现一次的数字 II - 题解

    Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...

  2. [Leetcode 90]求含有重复数的子集 Subset II

    [题目] Given a collection of integers that might contain duplicates, nums, return all possible subsets ...

  3. Leetcode之二分法专题-167. 两数之和 II - 输入有序数组(Two Sum II - Input array is sorted)

    Leetcode之二分法专题-167. 两数之和 II - 输入有序数组(Two Sum II - Input array is sorted) 给定一个已按照升序排列 的有序数组,找到两个数使得它们 ...

  4. Leetcode之回溯法专题-212. 单词搜索 II(Word Search II)

    Leetcode之回溯法专题-212. 单词搜索 II(Word Search II) 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词. 单 ...

  5. Leetcode之回溯法专题-52. N皇后 II(N-Queens II)

    Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int a ...

  6. Leetcode之回溯法专题-40. 组合总和 II(Combination Sum II)

    Leetcode之回溯法专题-40. 组合总和 II(Combination Sum II) 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使 ...

  7. 【LeetCode】375. Guess Number Higher or Lower II 解题报告(Python)

    [LeetCode]375. Guess Number Higher or Lower II 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://f ...

  8. mysql学习 | LeetCode数据库简单查询练习

    力扣:https://leetcode-cn.com/ 力扣网数据库练习:https://leetcode-cn.com/problemset/database/ 文章目录 175. 组合两个表 题解 ...

  9. 功能齐全、效率一流的免费开源数据库导入导出工具(c#开发,支持SQL server、SQLite、ACCESS三种数据库),每月借此处理数据5G以上

    软件名:DataPie 功能:支持SQL server.SQLite.ACCESS数据库的导入.导出.存储过程调用,支持EXCEL2007.EXCEL2003.ACCESS2007. CSV文件导入数 ...

随机推荐

  1. [個人紀錄] git 設定

    -- git history git config --global alias.history=log --graph --all --pretty=format:'%C(bold blue)%H% ...

  2. uni-app学习

    1. 学习uni-app 1.1. 概述 号称一次编写多端运行的前端框架,架构图如下 对某些不同平台的特殊功能,可以通过条件进行自动编译,也就是写两套代码,不同的环境会选择不同代码编译 1.2. 推荐 ...

  3. IOS 微信、QQ、叮叮等APP虚拟定位 实在太好用了

    前不久爱思助手更新了最新版本:V7.96,同时更新了好几个功能,包括给ios设备修改虚拟定位功能,想要给手机修改,我们需要电脑下载爱思助手最新版本V7.96,数据线连接电脑修改. 借助爱思助手的虚拟定 ...

  4. 分布式利器之redis-第二章

    上期答案 问题1:Redis单线程为什么快?回答: 完全基于内存,绝大部分请求是纯粹的内存操作,非常快速.数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1 ...

  5. 微信小程序 - scroll-view的scroll-into-view属性 - 在页面打开后滚动到指定的项

    需求: 这是一个可横向滚动的导航条,现在要求我,从别的页面reLaunch回到首页这里,刷新页面内容的同时,菜单项要滚动出来 (如果该菜单项不在可视区域),而不是让他被挡住. 代码:<scrol ...

  6. docker安装常见应用

    1.emqx #!/bin/bash docker stop emqttd-docker-v2.3.11 docker rm emqttd-docker-v2.3.11 docker run -tid ...

  7. python统计两个字符串从首字符开始最大连续相同的字符数

    在python中统计两个字符串从首字符开始最大连续相同的字符数,函数如下: def get_num(s1, s2): num = 0 len_s1 = len(s1) list_s1 = [] for ...

  8. Linux文本处理sed、软件包管理、磁盘存储、文件系统和挂载

    Linux文本处理工具sed.软件包管理.磁盘存储及文件系统 文本处理工具sed巧妙用法 1.通过sed获取文件路径的基名和目录名 思路:采用正则表达式将文本字符串分组,取对应的分组后向引用即可. 获 ...

  9. Httpd服务入门知识-Httpd服务常见配置案例之虚拟主机

    Httpd服务入门知识-Httpd服务常见配置案例之虚拟主机 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.虚拟主机实现方案 1>.Apache httpd 有三种实现虚 ...

  10. zabbix--监控MySQL主从状态

    zabbix监控MySQL主从状态 搭建MySQL主从后,很多时候不知道从的状态是否ok,有时候出现异常不能及时知道,这里通过shell脚本结合zabbix实现监控并告警 一般情况下,在MySQL的从 ...