题目大意 输出所有小于 \(2^{64}-1\) 的正整数 \(n\), 使得 \(\exists p, q, a, b\in \mathbb{N+}, p\neq q\rightarrow a^p=b^q=n\)

分析 不难发现,\(\forall n\) 满足条件, \(\exists r\in\mathbb{N+}\rightarrow n=r^{pq}\),\(pq\) 为不超过 \(64\) 的合数。所以预处理指数,再枚举 \(r\) 即可。

#include<bits/stdc++.h>
using namespace std; typedef unsigned long long ull;
const ull maxnum = ~0ull; int tot;
ull ans[10000000];
int cnt, prime[70];
bool nprime[70]; void GetPrime(int n)
{
for(int i = 2; i <= n; ++i) {
if(!nprime[i]) prime[++cnt] = i;
for(int j = 1; j <= cnt && i * prime[j] <= n; ++j) {
nprime[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
} int main()
{
GetPrime(64); for(ull i = 1; i <= 65536; ++i) {
ull base = 1;
for(int j = 1; j <= 64; ++j) {
if(maxnum / i >= base) {
base *= i;
if(nprime[j]) ans[++tot] = base;
}
}
} sort(ans + 1, ans + tot + 1);
tot = unique(ans + 1, ans + tot + 1) - ans - 1; for(int i = 1; i <= tot; ++i)
printf("%llu\n", ans[i]);
}

题解 UVa11752的更多相关文章

  1. UVA11752 The Super Powers —— 数论、枚举技巧

    题目链接:https://vjudge.net/problem/UVA-11752 题意: 一个超级数是能够至少能表示为两个数的幂,求1~2^64-1内的超级数. 题解: 1.可知对于 n = a^b ...

  2. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  3. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  4. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  5. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  6. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  7. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  8. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  9. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

随机推荐

  1. 【转帖】lsof命令总结

    lsof命令总结 https://www.cnblogs.com/chenqionghe/p/10677179.html 一.lsof是什么 lsof (list open files)是一个列出当前 ...

  2. 如何申请高德地图用户Key

    打开网页https://lbs.amap.com/,进入高德开发平台. 单击箭头处[注册],打开注册页面.(如果您已注册为高德地图开发者可跳过此步骤,直接登录即可). 选择[成为个人开发者],如果您是 ...

  3. 长乐国庆集训Day3

    T1 动态逆序对 题目 [题目描述] 给出一个长度为n的排列a(1~n这n个数在数列中各出现1次).每次交换两个数,求逆序对数%2的结果. 逆序对:对于两个数a[i],a[j](i<j),若a[ ...

  4. kali更新软件源

    首先就是修改软件源文件 /etc/apt/sources.list 可以用leafpad打开,在终端中键入: leafpad /etc/apt/sources.list 原码是kali官方的软件源,更 ...

  5. libevent源码分析三--signal事件响应

    libevent支持io事件,timeout事件,signal事件,这篇文件将分析libevent是如何组织signal事件,以及如何实现signal事件响应的. 1.  sigmap 类似于io事件 ...

  6. Scala Spark WordCount

    Scala所需依赖 <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-l ...

  7. 1.将控制器添加到 ASP.NET Core MVC 应用

    模型-视图-控制器 (MVC) 体系结构模式将应用分成 3 个主要组件:模型 (M).视图 (V) 和控制器 (C). 模型(M):表示应用数据的类. 模型类使用验证逻辑来对该数据强制实施业务规则. ...

  8. jq1.6版本前后,attr()和prop()的区别,来自慕课网的回答

    jQuery 1.6之前 ,.attr()方法在取某些 attribute 的值时,会返回 property 的值,这就导致了结果的不一致.从 jQuery 1.6 开始, .prop()方法 方法返 ...

  9. 解决IDEA Java Web项目没问题,但部署时出错的问题

    如果确定代码没问题,那多半是项目中用到的库没有被Tomcat复制到部署位置的lib目录下. 点击调试/运行,看到控制台Tomcat在部署,但一直不弹出浏览器页面,Tomcat控制台报错如下: 是在Ar ...

  10. 【书评:Oracle查询优化改写】第四章

    [书评:Oracle查询优化改写]第四章 BLOG文档结构图 一.1 导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~O(∩_∩)O~: ① check的 ...