Codechef:Fibonacci Number/FN——求通项+二次剩余+bsgs
题意
定义 $F_n$ 为
$$F_n = \left\{\begin{matrix}
0, n=0\\
1, n=1 \\
F_{n-1} + F_{n-2}, n > 1
\end{matrix}\right.$$
现给你一个素数 $p$ 和一个非负整数 $C$,你需要最小的非负整数 $n$,使得 $F_n \equiv C (mod \ p)$.
分析
因为题目保证 $p \ mod \ 10$ 是一个完全平方数,也就是说 $p \ mod \ 5$ 等于1或-1,即5是模$p$ 的二次剩余(据说)。
求出通项,用Cipolla求出5的二次剩余,记为 $c$,并记 $p = \frac{1+c}{2}$,
通项变成
$${1\over c}\left(p^n-(-1)^n{1\over p^n}\right)\equiv a\pmod{P}$$
解得
$$p^n\equiv {ac\pm \sqrt{ac+4(-1)^n}\over 2}$$
然后枚举一下 $n$ 的奇偶性,再用BSGS求出 $n$就可以了。
//我原来的模板好像有问题,这里贴大佬的模板
//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x7fffffff
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
using namespace std;
char buf[<<],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,,<<,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=;R char ch;
while((ch=getc())>''||ch<'')(ch=='-')&&(f=-);
for(res=ch-'';(ch=getc())>=''&&ch<='';res=res*+ch-'');
return res*f;
}
char sr[<<],z[];int C=-,Z=;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
void print(R int x){
if(C><<)Ot();if(x<)sr[++C]='-',x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
int P;
inline int add(R int x,R int y){return 0ll+x+y>=P?0ll+x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=;
for(;y;y>>=,x=mul(x,x))(y&)?res=mul(res,x):;
return res;
}
int w,a;
struct cp{
int x,y;
inline cp(R int _x,R int _y):x(_x),y(_y){}
inline cp operator *(const cp &b)const{
return cp(add(mul(x,b.x),mul(w,mul(y,b.y))),add(mul(x,b.y),mul(y,b.x)));
}
};
int ksm(R cp x,R int y){
R cp res(,);
for(;y;y>>=,x=x*x)if(y&)res=res*x;
return res.x;
}
int Sqrt(int x){
if(!x)return ;
if(ksm(x,(P-)>>)==P-)return -;
while(true){
a=mul(rand(),rand()),w=dec(mul(a,a),x);
if(ksm(w,(P-)>>)==P-)return ksm(cp(a,),(P+)>>);
}
}
const int N=;
struct Hash{
struct eg{int v,nx,w;}e[N];int head[N],tot;
inline void clr(){memset(head,,sizeof(head)),tot=;}
inline void add(R int v,R int w){e[++tot]={v,head[v&],w},head[v&]=tot;}
int query(int x){
go(x&)if(v==x)return e[i].w;
return -;
}
}mp[];
int bsgs(int x,int v,int sgn){
int m=sqrt(P)+;mp[].clr(),mp[].clr();
for(R int i=,res=mul(v,x);i<=m;++i,res=mul(res,x))mp[i&].add(res,i);
for(R int i=,tmp=ksm(x,m),res=tmp;i<=m;++i,res=mul(res,tmp))
if(mp[(i*m)&^sgn].query(res)!=-)return i*m-mp[(i*m)&^sgn].query(res);
return inf;
}
int c,s,p,inv2,res,rt;
int main(){
srand(time(NULL));
// freopen("testdata.in","r",stdin);
for(int T=read();T;--T){
c=read(),P=read(),s=Sqrt(),inv2=(P+)>>,p=mul(s+,inv2),c=mul(c,s);
res=inf;
rt=Sqrt((1ll*c*c+)%P);
if(rt!=-){
cmin(res,bsgs(p,mul(add(c,rt),inv2),)),
cmin(res,bsgs(p,mul(dec(c,rt),inv2),));
}
rt=Sqrt((1ll*c*c+P-)%P);
if(rt!=-){
cmin(res,bsgs(p,mul(add(c,rt),inv2),)),
cmin(res,bsgs(p,mul(dec(c,rt),inv2),));
}
printf("%d\n",res==inf?-:res);
}
return ;
}
参考链接:https://www.cnblogs.com/bztMinamoto/p/10664967.html
Codechef:Fibonacci Number/FN——求通项+二次剩余+bsgs的更多相关文章
- Codechef:Fibonacci Number/FN(二次剩余+bsgs)
题面 传送门 前置芝士 \(bsgs\),\(Cipolla\) 题解 因为题目保证\(p\bmod 10\)是完全平方数,也就是说\(p\bmod 5\)等于\(1\)或\(-1\),即\(5\)是 ...
- 求四百万以内Fibonacci(number)数列偶数结果的总和
又对啦...开心~~~~ 只是代码可能不符合PEP标准什么的... Each new term in the Fibonacci sequence is generated by adding the ...
- Fibonacci number
https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Moc ...
- fibonacci number & fibonacci sequence
fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...
- Buge's Fibonacci Number Problem
Buge's Fibonacci Number Problem Description snowingsea is having Buge’s discrete mathematics lesson, ...
- [UCSD白板题] The Last Digit of a Large Fibonacci Number
Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...
- [UCSD白板题 ]Small Fibonacci Number
Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...
- (斐波那契总结)Write a method to generate the nth Fibonacci number (CC150 8.1)
根据CC150的解决方式和Introduction to Java programming总结: 使用了两种方式,递归和迭代 CC150提供的代码比较简洁,不过某些细节需要分析. 现在直接运行代码,输 ...
- Algorithms - Fibonacci Number
斐波那契数列(Fibonacci Number)从数学的角度是以递归的方法定义的: \(F_0 = 0\) \(F_1 = 1\) \(F_n = F_{n-1} + F_{n-2}\) (\(n \ ...
随机推荐
- API开放平台基于accessToken实现
A企业和B企业要进行合作时,A要开放api接口给B调用,这时候A可以采用基于accessToken的方式实现开放api接口 数据库表设计 B调用方式 B企业调用接口前先获取accessToken ht ...
- 给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用
一般来说,删除节点可分为两个步骤: 首先找到需要删除的节点: 如果找到了,删除它. 说明: 要求算法时间复杂度为 O(h),h 为树的高度. 示例: root = [5,3,6,2,4,null,7] ...
- sqlite 安装与编译
本文简述了SQLite的概念,并详细描述了SQLite在Linux和Windows平台下的编译方法 关于 SQLite SQLite是一个进程内的库,实现了自给自足的.无服务器的.零配置的.事务性的 ...
- RabbitMQ之消息模式
目的: 消息如何保证100%的投递 幂等性概念 Confirm确认消息 Return返回消息 自定义消费者 前言: 想必知道消息中间件RabbitMQ的小伙伴,对于引入中间件的好处可以起到抗高并发,削 ...
- centos 6.5安装zabbix 4.4
一.安装环境 本环境,使用单机部署. 操作系统:centos 7.5 x64zabbix-server,Mysql,php,nginx都在同一台服务器.都是使用Yum安装的! 官方安装文档: http ...
- MySql5.7 json查询
create table t1(name json); insert into t1 values(’ { “hello”: “song”, “num”: 111, “obj”: { “who”: “ ...
- busybox测试dns问题
获取svc [root@master01 ~]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL- ...
- 【转载】使用宝塔对Linux系统进行界面化管理操作
腾讯云服务器和阿里云服务器的Centos系统都是没有Linux系统的一个版本,Centos系统的操作都是在没有类似Windows图形化操作界面的黑框框命令窗口进行操作的,需要使用到很多Linux操作命 ...
- github上传本地项目代码
进入github首页,点击新项目new repository,如下图所示: 然后进入如下页面,填写信息: 最后点击Create repository,生成如下页面: 红色圈圈画的步骤,先点击Clone ...
- js预编译环节 变量声明提升 函数声明整体提升
预编译四部曲 1.创建AO对象 2.找形参和变量声明,将变量和形参名作为AO属性名,值为undefined 3.将实参和形参统一 4.在函数体里面找函数声明,值赋予函数体 function fn(a) ...