• 题目大意:给定一个长度为nnn的序列,至多将序列分成m+1m+1m+1段,每段序列都有权值,权值为序列内两个数两两相乘之和。求序列权值和最小为多少?
  • 数据规模:m&lt;=n&lt;=1000.m&lt;=n&lt;=1000.m<=n<=1000.
  • 分析:令w[i,j]w[i,j]w[i,j]表示区间[i,j][i,j][i,j]中两两乘积之和,f[i][j]f[i][j]f[i][j]表示前jjj个数分成iii段的最小值。

    f[i][j]=f[i−1][k]+w[k+1,j]f[i][j]=f[i-1][k]+w[k+1,j]f[i][j]=f[i−1][k]+w[k+1,j]

    w[k+1,j]w[k+1,j]w[k+1,j]可以转换为w[1,j]−w[1,k]−sum[k]∗(sum[j]−sum[k])w[1,j]-w[1,k]-sum[k]*(sum[j]-sum[k])w[1,j]−w[1,k]−sum[k]∗(sum[j]−sum[k])

    其中sum[j]sum[j]sum[j]表示前j个数的前缀和。令w[i]=w[1,i]w[i]=w[1,i]w[i]=w[1,i]

    f[i][j]=f[i−1][k]+w[j]−w[k]−sum[k]∗(sum[j]−sum[k])f[i][j]=f[i-1][k]+w[j]-w[k]-sum[k]*(sum[j]-sum[k])f[i][j]=f[i−1][k]+w[j]−w[k]−sum[k]∗(sum[j]−sum[k])

    y=f[i−1][k]−w[k]+sum[k]2y=f[i-1][k]-w[k]+sum[k]^2y=f[i−1][k]−w[k]+sum[k]2

    x=sum[k]x=sum[k]x=sum[k]

    k=sum[j]k=sum[j]k=sum[j]

    g=f[i][j]−w[j]g=f[i][j]-w[j]g=f[i][j]−w[j]

    则有:y−kx=by-kx=by−kx=b

    此为直线方程,kkk为定值,要求bbb(w[j]w[j]w[j]为定值)最小,即为直线的截距最小。平面上有若干点(x,y)(x,y)(x,y),这些点是由各个决策点产生的。而将直线从下往上平移,它接触到的第一个点即为最佳决策点。因为斜率bbb是上升的,所以,下一阶段的直线方程斜率更高,于是最佳决策点一定形成了下凸包序列。

    还可以用滚动数组…具体见代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
#define LL long long
int n, m, s, t, dq[MAXN];
LL sum[MAXN], w[MAXN], f[2][MAXN]; inline LL Getup(int now, int i, int j) { return (f[now][i] + sum[i]*sum[i] - w[i]) - (f[now][j] + sum[j]*sum[j] - w[j]); }//Yi-Yj
inline LL Getdown(int now, int i, int j) { return sum[i] - sum[j]; }//Xi-Xj int main ()
{
int x;
while(scanf("%d%d", &n, &m), n || m)
{
for(int i = 1; i <= n; i++)
scanf("%d", &x), sum[i] = sum[i-1] + x, w[i] = w[i-1] + sum[i-1] * x;
int now = 0;
for(int i = 1; i <= n; i++) f[now][i] = w[i];
for(int i = 2; i <= m+1; i++)
{
now ^= 1, s = t = 0, dq[t++] = 0;
for(int j = 1; j <= n; j++)
{
while(t-s > 1 && Getup(now^1, dq[s+1], dq[s]) <= sum[j] * Getdown(now^1, dq[s+1], dq[s])) s++;
f[now][j] = f[now^1][dq[s]] + w[j] - w[dq[s]] - sum[dq[s]] * (sum[j] - sum[dq[s]]);
while(t-s > 1 && Getup(now^1, j, dq[t-1]) * Getdown(now^1, dq[t-1], dq[t-2]) <= Getup(now^1, dq[t-1], dq[t-2]) * Getdown(now^1, j, dq[t-1])) t--;
dq[t++] = j;
}
}
printf("%lld\n", f[now][n]);
}
}

斜率优化板题 HDU2829 Lawrence的更多相关文章

  1. 斜率优化板题 HDU 3507 Print Article

    题目大意:输出N个数字a[N],输出的时候可以连续的输出,每连续输出一串,它的费用是 "这串数字和的平方加上一个常数M".n<=500000 我们设dp[i]表示输出到i的时 ...

  2. 斜率优化第一题! HDU3507 | 单调队列优化DP

    放一手原题 题解: 第一次写(抄)斜率优化,心里还是有点小激动的.讲一下怎么实现的! 首先我们可以考虑一个朴素的dp:DP[i]表示前i个数字的最少花费,显然我们有一个转移方程 DP[i]=min{D ...

  3. 斜率优化入门题题单$QwQ$

    其实就是这一篇的那个例题帕的大部分题目的题解就写这儿辣,,, 因为都是些基础题不想专门给写题解,,,但是又掌握得差不得不写,,, 麻油办法就写一块儿好辣$QwQ$ 当然辣比较难的我就没放进来辣$QwQ ...

  4. 【DP】斜率优化

    斜率优化 入门题:PKU3709 很多人貌似都是做这道题来K斜率优化的,所以看了资料以后还是开始入手吧. 然而还是得跪求大神的程序啊 ORZ ORZ…… 其实理解斜率优化就是会列斜率不等式,还要理解剔 ...

  5. 玩具装箱 bzoj1010 斜率优化

    斜率优化的题好像都是这样的方程:左边关于j,k的一个(...)/(...)的式子,右边是个只与i有关的可算的数字: 然后把它放到二维坐标轴上,用单调队列维护一个凸壳,O(n)的复杂度: 这道题但是我发 ...

  6. 【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)

    [BZOJ2684][CEOI2004]锯木厂选址(斜率优化,动态规划) 题面 万恶的BZOJ因为权限题的原因而做不了... 我要良心的提供题面 Description 从山顶上到山底下沿着一条直线种 ...

  7. 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途

    斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ;   1<=j<i (O(n^2)暴力)这样一个式子,首 ...

  8. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

  9. BZOJ3156 防御准备 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...

随机推荐

  1. [转帖]OLTP、OLAP与HTAP

    OLTP.OLAP与HTAP https://blog.csdn.net/ZG_24/article/details/87854982   OLTP On-Line Transaction Proce ...

  2. Three.js构造一个简单的房间

    主要研究three.js在3D场景中基本使用:画一个简单的房子.房子上画门和玻璃.房间内放一个床.定义鼠标事件可以移动场景.动画的使用等. 1.Three.js画的一个简单的房子,模拟地板以及四堵墙 ...

  3. Python解析 算数表达式求值 栈的使用

    使用Python实现一种算数表达式求值的算法,模拟这种使用栈的方式,这是由E.W.Dijkstra在20世纪60年代发明的一种非常简单的算法.代码模拟仅仅表现一种编程思想,代码的逻辑并不完全: if ...

  4. ETCD服务

    ETCD 简介 ETCD是一个开源的.分布式的键值对数据存储系统,由Go语言实现,用于存储key-value键值对,同时不仅仅是存储,主要用途是提供共享配置及服务发现,使用Raft一致性算法来管理高度 ...

  5. Geoserver发布强制显示标签处理

    TextSymbolizer 增加如下配置: <!--  标签重叠也显示  --> <VendorOption name="conflictResolution" ...

  6. 关于使用KubeSphere中的docker配置Harbor仓库http访问docker login登陆报错的解决办法

    # 先进入harbor目录中,停止harbor docker-compose stop # 然后修改docker相关文件 # 第一种方式:修改/etc/docker/daemon.json { &qu ...

  7. KindEditor 简单使用笔记

    1.在官网下载最新版本  http://kindeditor.net/demo.php 2.在页面中加上如下代码 <textarea id="editor_id" name= ...

  8. linq 注意事项

    //linq分组需要注意的是into是在原表的基础上创建新的表进行排序 //new 是新表的字段,可以创建新的字段可以获取当前分组的没一个组的条数 var q = from p in list gro ...

  9. spring boot 分布式锁组件 spring-boot-klock-starter

    基于redis的分布式锁spring-boot starter组件,使得项目拥有分布式锁能力变得异常简单,支持spring boot,和spirng mvc等spring相关项目 快速开始 sprin ...

  10. pandas-14 concatenate和combine_first的用法

    pandas-14 concatenate和combine_first的用法 concatenate主要作用是拼接series和dataframe的数据. combine_first可以做来填充数据. ...