斜率优化板题 HDU2829 Lawrence
- 题目大意:给定一个长度为nnn的序列,至多将序列分成m+1m+1m+1段,每段序列都有权值,权值为序列内两个数两两相乘之和。求序列权值和最小为多少?
- 数据规模:m<=n<=1000.m<=n<=1000.m<=n<=1000.
- 分析:令w[i,j]w[i,j]w[i,j]表示区间[i,j][i,j][i,j]中两两乘积之和,f[i][j]f[i][j]f[i][j]表示前jjj个数分成iii段的最小值。
f[i][j]=f[i−1][k]+w[k+1,j]f[i][j]=f[i-1][k]+w[k+1,j]f[i][j]=f[i−1][k]+w[k+1,j]
w[k+1,j]w[k+1,j]w[k+1,j]可以转换为w[1,j]−w[1,k]−sum[k]∗(sum[j]−sum[k])w[1,j]-w[1,k]-sum[k]*(sum[j]-sum[k])w[1,j]−w[1,k]−sum[k]∗(sum[j]−sum[k])
其中sum[j]sum[j]sum[j]表示前j个数的前缀和。令w[i]=w[1,i]w[i]=w[1,i]w[i]=w[1,i]
f[i][j]=f[i−1][k]+w[j]−w[k]−sum[k]∗(sum[j]−sum[k])f[i][j]=f[i-1][k]+w[j]-w[k]-sum[k]*(sum[j]-sum[k])f[i][j]=f[i−1][k]+w[j]−w[k]−sum[k]∗(sum[j]−sum[k])
y=f[i−1][k]−w[k]+sum[k]2y=f[i-1][k]-w[k]+sum[k]^2y=f[i−1][k]−w[k]+sum[k]2
x=sum[k]x=sum[k]x=sum[k]
k=sum[j]k=sum[j]k=sum[j]
g=f[i][j]−w[j]g=f[i][j]-w[j]g=f[i][j]−w[j]
则有:y−kx=by-kx=by−kx=b
此为直线方程,kkk为定值,要求bbb(w[j]w[j]w[j]为定值)最小,即为直线的截距最小。平面上有若干点(x,y)(x,y)(x,y),这些点是由各个决策点产生的。而将直线从下往上平移,它接触到的第一个点即为最佳决策点。因为斜率bbb是上升的,所以,下一阶段的直线方程斜率更高,于是最佳决策点一定形成了下凸包序列。
还可以用滚动数组…具体见代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
#define LL long long
int n, m, s, t, dq[MAXN];
LL sum[MAXN], w[MAXN], f[2][MAXN];
inline LL Getup(int now, int i, int j) { return (f[now][i] + sum[i]*sum[i] - w[i]) - (f[now][j] + sum[j]*sum[j] - w[j]); }//Yi-Yj
inline LL Getdown(int now, int i, int j) { return sum[i] - sum[j]; }//Xi-Xj
int main ()
{
int x;
while(scanf("%d%d", &n, &m), n || m)
{
for(int i = 1; i <= n; i++)
scanf("%d", &x), sum[i] = sum[i-1] + x, w[i] = w[i-1] + sum[i-1] * x;
int now = 0;
for(int i = 1; i <= n; i++) f[now][i] = w[i];
for(int i = 2; i <= m+1; i++)
{
now ^= 1, s = t = 0, dq[t++] = 0;
for(int j = 1; j <= n; j++)
{
while(t-s > 1 && Getup(now^1, dq[s+1], dq[s]) <= sum[j] * Getdown(now^1, dq[s+1], dq[s])) s++;
f[now][j] = f[now^1][dq[s]] + w[j] - w[dq[s]] - sum[dq[s]] * (sum[j] - sum[dq[s]]);
while(t-s > 1 && Getup(now^1, j, dq[t-1]) * Getdown(now^1, dq[t-1], dq[t-2]) <= Getup(now^1, dq[t-1], dq[t-2]) * Getdown(now^1, j, dq[t-1])) t--;
dq[t++] = j;
}
}
printf("%lld\n", f[now][n]);
}
}
斜率优化板题 HDU2829 Lawrence的更多相关文章
- 斜率优化板题 HDU 3507 Print Article
题目大意:输出N个数字a[N],输出的时候可以连续的输出,每连续输出一串,它的费用是 "这串数字和的平方加上一个常数M".n<=500000 我们设dp[i]表示输出到i的时 ...
- 斜率优化第一题! HDU3507 | 单调队列优化DP
放一手原题 题解: 第一次写(抄)斜率优化,心里还是有点小激动的.讲一下怎么实现的! 首先我们可以考虑一个朴素的dp:DP[i]表示前i个数字的最少花费,显然我们有一个转移方程 DP[i]=min{D ...
- 斜率优化入门题题单$QwQ$
其实就是这一篇的那个例题帕的大部分题目的题解就写这儿辣,,, 因为都是些基础题不想专门给写题解,,,但是又掌握得差不得不写,,, 麻油办法就写一块儿好辣$QwQ$ 当然辣比较难的我就没放进来辣$QwQ ...
- 【DP】斜率优化
斜率优化 入门题:PKU3709 很多人貌似都是做这道题来K斜率优化的,所以看了资料以后还是开始入手吧. 然而还是得跪求大神的程序啊 ORZ ORZ…… 其实理解斜率优化就是会列斜率不等式,还要理解剔 ...
- 玩具装箱 bzoj1010 斜率优化
斜率优化的题好像都是这样的方程:左边关于j,k的一个(...)/(...)的式子,右边是个只与i有关的可算的数字: 然后把它放到二维坐标轴上,用单调队列维护一个凸壳,O(n)的复杂度: 这道题但是我发 ...
- 【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)
[BZOJ2684][CEOI2004]锯木厂选址(斜率优化,动态规划) 题面 万恶的BZOJ因为权限题的原因而做不了... 我要良心的提供题面 Description 从山顶上到山底下沿着一条直线种 ...
- 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途
斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ; 1<=j<i (O(n^2)暴力)这样一个式子,首 ...
- 斜率优化dp 的简单入门
不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...
- BZOJ3156 防御准备 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...
随机推荐
- dp --- 二维dp + 最大上升子序列
<传送门> 滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 74477 Accepted: 27574 ...
- CF704D Captain America 上下界网络流
传送门 现在相当于说每一个条件都有一个染成红色的盾牌的数量限制\([l,r]\),需要满足所有限制且染成红色的盾牌数量最小/最大. 注意到一个盾牌染成红色对于一行和一列都会产生影响.如果选中一个物品对 ...
- opentsdb操作草稿
插入数据api/put 192.168.1.68:4242/api/put?details http://localhost:4242/api/put?detailsmethod:POST[ { &q ...
- Ambari深入学习(II)-实现细节
在第一节中,我们简单讲了一下Ambari的系统架构.我们这一节主要分析Ambari的源代码,总览Ambari的具体实现方式及其工作细节. 一.Ambari-Server启动 Ambari-Server ...
- ajax标准写法
ajax 标准写法 $.ajax({ url:"http://www.microsoft.com", //请求的url地址 dataType:"json", / ...
- ASP.NET SignalR 系列(四)之指定对象推送
在上一章讲到了广播推送,即所有订阅的用户都能收到,这种适合于信息广播. 接下来介绍如何给指定的对象推送 在讲这个之前先说明一下连接创建的基础知识 1.每个页面与服务端创建连接并启动时,这时服务端会产生 ...
- Eclipse的常用设置。
用惯了VS,再回过去用Eclipse真是一件痛苦的事.so,在这里记录下使用过程中的一些设置以做备忘. 1.代码自动提示 在我们忘记方法名或者想偷懒时,代码自动提示很管用.不过Eclipse默认是输入 ...
- npm和Node.js简介
Node.js Node.js是JavaScript的一种运行环境,是对Google V8引擎进行的封装.是一个服务器端的javascript的解释器.Node.js允许通过JavaScript和一系 ...
- nginx-1.12.0安装
1.配置相关环境: yum install -y gcc glibc gcc-c++ zlib pcre-devel openssl-devel rewrite模块需要pcre库 ssl功能需要ope ...
- mysql高级用法(1)- mariadb的主从搭建
Mariadb介绍: mariadb是mysql的一个分支,需要进一步了解的参考:https://mariadb.org/ 安装参考教程:window版安装:Mariadb 介绍 1 (安装) lin ...