python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

auto-sklearn官网

https://automl.github.io/auto-sklearn/master/installation.html

https://automl.github.io/auto-sklearn/master/

auto-sklearn

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

  

auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimizationmeta-learning and ensemble construction. Learn more about the technology behind auto-sklearn by reading our paper published at NIPS 2015 .

Example

import autosklearn.classification
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
X, y = sklearn.datasets.load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
automl = autosklearn.classification.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))

  

This will run for one hour and should result in an accuracy above 0.98.

License

auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.

Citing auto-sklearn

If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:

Efficient and Robust Automated Machine Learning, Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015).

Bibtex entry:

@incollection{NIPS2015_5872,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and
Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28},
editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
pages = {2962--2970},
year = {2015},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf}
}

Contributing

We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can pick an issue from the issue tracker which is marked with Needs contributer.

Note

To avoid spending time on duplicate work or features that are unlikely to get merged, it is highly advised that you contact the developers by opening a github issue before starting to work.

When developing new features, please create a new branch from the development branch. When to submitting a pull request, make sure that all tests are still passing.

auto-sklearn安装官网(不支持Windows系统)

https://automl.github.io/auto-sklearn/master/installation.html

Installation

System requirements

auto-sklearn has the following system requirements:

For an explanation of missing Microsoft Windows and MAC OSX support please check the Section Windows/OSX compatibility.

Installing auto-sklearn

Please install all dependencies manually with:

curl https://raw.githubusercontent.com/automl/auto-sklearn/master/requirements.txt | xargs -n 1 -L 1 pip install

Then install auto-sklearn:

pip install auto-sklearn

We recommend installing auto-sklearn into a virtual environment or an Anaconda environment.

If the pip installation command fails, make sure you have the System requirements installed correctly.

Ubuntu installation

To provide a C++11 building environment and the lateste SWIG version on Ubuntu, run:

sudo apt-get install build-essential swig

Anaconda installation

Anaconda does not ship auto-sklearn, and there are no conda packages for auto-sklearn. Thus, it is easiest to install auto-sklearn as detailed in the Section Installing auto-sklearn.

A common installation problem under recent Linux distribution is the incompatibility of the compiler version used to compile the Python binary shipped by AnaConda and the compiler installed by the distribution. This can be solved by installing the gcc compiler shipped with AnaConda (as well as swig):

conda install gxx_linux-64 gcc_linux-64 swig

Windows/OSX compatibility

Windows

auto-sklearn relies heavily on the Python module resourceresource is part of Python’s Unix Specific Services and not available on a Windows machine. Therefore, it is not possible to run auto-sklearn on a Windows machine.

Possible solutions (not tested):

  • Windows 10 bash shell

  • virtual machine

  • docker image

Mac OSX

We currently do not know if auto-sklearn works on OSX. There are at least two issues holding us back from actively supporting OSX:

  • The resource module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).

  • OSX machines on travis-ci take more than 30 minutes to spawn. This makes it impossible for us to run unit tests forauto-sklearn and its dependencies SMAC3 and ConfigSpace.

In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.

Possible other solutions (not tested):

  • virtual machine

  • docker image

python信用评分卡建模(附代码,博主录制)

auto-sklearn的更多相关文章

  1. 机器学习之sklearn——聚类

    生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...

  2. 使用sklearn进行集成学习——实践

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...

  3. 谁动了我的特征?——sklearn特征转换行为全记录

    目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...

  4. sklearn两种保存模型的方式

    作者:卢嘉颖 链接:https://www.zhihu.com/question/27187105/answer/97334347 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 1. pic ...

  5. [转]使用sklearn进行集成学习——实践

    转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...

  6. ML神器:sklearn的快速使用

    传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都 ...

  7. sklearn.neighbors.kneighbors_graph的简单属性介绍

    connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, inclu ...

  8. 深入浅出KNN算法(二) sklearn KNN实践

    姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...

  9. 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

    项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...

  10. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. .gitignore详解(附上eclipse的java项目的 .gitignore文件)

    今天讲讲Git中非常重要的一个文件――.gitignore. 首先要强调一点,这个文件的完整文件名就是“.gitignore”,注意最前面有个“.”.这样没有扩展名的文件在Windows下不太好创建, ...

  2. MySQL创建用户和加限权

    目录 1.权限管理 1.1对新用户增删改 1.2对当前的用户授权管理 1.权限管理 ​ 我们知道我们的最高权限管理者是root用户,它拥有着最高的权限操作.包括select.update.delete ...

  3. MySQL数据库扫盲篇

    MySQL数据库扫盲篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.MySQL概述 1>.什么是MySQL MySQL是瑞典的MySQL AB公司开发的一个可用于各 ...

  4. 一小部分用python进行MD5加密的小技巧

    上个图 要求计算出开头为ae3da且盐值为3c6e的字符串 简单的思路就是直接进行枚举,然后筛选符合条件的MD5加密字符,代码如下 #-*- coding:utf- -*- import hashli ...

  5. mutable用于修改const成员函数中的成员变量

    http://no001.blog.51cto.com/1142339/389840/ mutalbe的中文意思是“可变的,易变的”,跟constant(既C++中的const)是反义词. 在C++中 ...

  6. C++学习(3)——指针

    1. 指针所占内存空间 在32位操作系统下,占用4个字节,64位下占8个字节   2. 空指针与野指针 空指针:指针变量指向内存中编号为0的空间 用途:初始化指针变量 注意:空指针指向的内存量是不可以 ...

  7. 检测并修改linux服务器日期

    公司的一个应用服务器license到期了,商务上短时间解决不了.只好将服务器的时间调到去年,临时将就一下. 服务器是vmware虚拟机装的centos,日期每隔一段时间会自动同步,百度了好久,也关闭不 ...

  8. centos7部署etcd集群

    实验环境:centos7.4纯净版 192.168.216.130 node1 master 192.168.216.132 node2 slave 192.168.216.134 node3 sla ...

  9. node爬虫爬取中文时乱码问题 | nodejs gb2312、GBK中文乱码解决方法

    iconv需要依赖native库,这样一来,在一些不支持native模块安装的虚拟主机和windows平台上,我们还是无法安心处理GBK编码. 老外写了一个通过纯Javascript转换编码的模块 i ...

  10. MySql添加字段命令

    使用ALTER TABLE命令来向一个表添加字段,示例如下: -- 向t_user表添加user_age字段 ) DEFAULT NULL COMMENT '年龄' AFTER user_email; ...