auto-sklearn
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
auto-sklearn官网
https://automl.github.io/auto-sklearn/master/installation.html
https://automl.github.io/auto-sklearn/master/
auto-sklearn
auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:
import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)
auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Learn more about the technology behind auto-sklearn by reading our paper published at NIPS 2015 .
Example
import autosklearn.classification
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
X, y = sklearn.datasets.load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
automl = autosklearn.classification.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
This will run for one hour and should result in an accuracy above 0.98.
License
auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.
Citing auto-sklearn
If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:
Efficient and Robust Automated Machine Learning, Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015).
Bibtex entry:
@incollection{NIPS2015_5872,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and
Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28},
editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
pages = {2962--2970},
year = {2015},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf}
}
Contributing
We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can pick an issue from the issue tracker which is marked with Needs contributer.
Note
To avoid spending time on duplicate work or features that are unlikely to get merged, it is highly advised that you contact the developers by opening a github issue before starting to work.
When developing new features, please create a new branch from the development branch. When to submitting a pull request, make sure that all tests are still passing.
auto-sklearn安装官网(不支持Windows系统)
https://automl.github.io/auto-sklearn/master/installation.html
Installation
System requirements
auto-sklearn has the following system requirements:
Linux operating system (for example Ubuntu) (get Linux here),
Python (>=3.5) (get Python here).
C++ compiler (with C++11 supports) (get GCC here) and
SWIG (version 3.0 or later) (get SWIG here).
For an explanation of missing Microsoft Windows and MAC OSX support please check the Section Windows/OSX compatibility.
Installing auto-sklearn
Please install all dependencies manually with:
curl https://raw.githubusercontent.com/automl/auto-sklearn/master/requirements.txt | xargs -n 1 -L 1 pip install
Then install auto-sklearn:
pip install auto-sklearn
We recommend installing auto-sklearn into a virtual environment or an Anaconda environment.
If the pip
installation command fails, make sure you have the System requirements installed correctly.
Ubuntu installation
To provide a C++11 building environment and the lateste SWIG version on Ubuntu, run:
sudo apt-get install build-essential swig
Anaconda installation
Anaconda does not ship auto-sklearn, and there are no conda packages for auto-sklearn. Thus, it is easiest to install auto-sklearn as detailed in the Section Installing auto-sklearn.
A common installation problem under recent Linux distribution is the incompatibility of the compiler version used to compile the Python binary shipped by AnaConda and the compiler installed by the distribution. This can be solved by installing the gcc compiler shipped with AnaConda (as well as swig):
conda install gxx_linux-64 gcc_linux-64 swig
Windows/OSX compatibility
Windows
auto-sklearn relies heavily on the Python module resource
. resource
is part of Python’s Unix Specific Services and not available on a Windows machine. Therefore, it is not possible to run auto-sklearn on a Windows machine.
Possible solutions (not tested):
Windows 10 bash shell
virtual machine
docker image
Mac OSX
We currently do not know if auto-sklearn works on OSX. There are at least two issues holding us back from actively supporting OSX:
The
resource
module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).OSX machines on travis-ci take more than 30 minutes to spawn. This makes it impossible for us to run unit tests forauto-sklearn and its dependencies SMAC3 and ConfigSpace.
In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.
Possible other solutions (not tested):
virtual machine
docker image
python信用评分卡建模(附代码,博主录制)
auto-sklearn的更多相关文章
- 机器学习之sklearn——聚类
生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...
- 使用sklearn进行集成学习——实践
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...
- 谁动了我的特征?——sklearn特征转换行为全记录
目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...
- sklearn两种保存模型的方式
作者:卢嘉颖 链接:https://www.zhihu.com/question/27187105/answer/97334347 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 1. pic ...
- [转]使用sklearn进行集成学习——实践
转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...
- ML神器:sklearn的快速使用
传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都 ...
- sklearn.neighbors.kneighbors_graph的简单属性介绍
connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, inclu ...
- 深入浅出KNN算法(二) sklearn KNN实践
姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...
- 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...
- 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
随机推荐
- JSP内置对象(下)
session的生命周期 创建 活动 销毁 application对象 Page对象
- 编译安装 keepalived-2.0.16.tar.gz
一.下载安装包 wget https://www.keepalived.org/software/keepalived-2.0.16.tar.gz 安装相关依赖 把所有的rpm包放在一个目录下. rp ...
- Yii2 路由美化
一.美化路由形式 如:localhost/index.php?r=site/index 这种路由形式对SEO不友好,那么是否可以对路由进行一下美化呢?在Yii2中我们可以将路由必成以下的形式: 如:l ...
- mysql表的连接
目录 1.笛卡尔积:将两表所有的数据一一对应,生成一张大表 2.连表查询 1.inner join 内连接 2.left join 左连接(left join左边的表为主表,主表记录必须全部显示,辅表 ...
- PHP中$_SERVER全局变量的使用
<!DOCTYPE html> <html> <body> <?php echo $_SERVER['PHP_SELF']; echo "<b ...
- 模型融合---CatBoost 调参总结
一.参数速查 1.通用参数 2.性能参数 3.处理单元设置 二.分类 三.回归
- php的冒泡排序
有其它语言基础, 这些套路弄起来就是快! 都在注释里~ <?php /** * 冒泡排序 PHP实现 * 原理:两两相邻比较,如果反序就交换,否则不交换 * 时间复杂度:最好 O(n) 最坏 O ...
- moviepy草码
第一下. # coding=utf-8 from moviepy.editor import * from moviepy.video.tools.subtitles import Subtitles ...
- c#中的多态学习总结
c#的多台方法,大体上和c++的类似,但是有点区别的,我这里刚刚初学,因此把重点记录下. 多态是同一个行为具有多个不同表现形式或形态的能力. 多态性意味着有多重形式.在面向对象编程范式中,多态性往往表 ...
- JS判断某变量是否为某数组中的一个值的3种方法
1.正则表达式 js 中判断某个元素是否存在于某个 js 数组中,相当于 PHP 语言中的 in_array 函数. 1 Array.prototype.in_array = function (e) ...