python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

auto-sklearn官网

https://automl.github.io/auto-sklearn/master/installation.html

https://automl.github.io/auto-sklearn/master/

auto-sklearn

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

  

auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimizationmeta-learning and ensemble construction. Learn more about the technology behind auto-sklearn by reading our paper published at NIPS 2015 .

Example

import autosklearn.classification
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
X, y = sklearn.datasets.load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
automl = autosklearn.classification.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))

  

This will run for one hour and should result in an accuracy above 0.98.

License

auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.

Citing auto-sklearn

If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:

Efficient and Robust Automated Machine Learning, Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015).

Bibtex entry:

@incollection{NIPS2015_5872,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and
Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28},
editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
pages = {2962--2970},
year = {2015},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf}
}

Contributing

We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can pick an issue from the issue tracker which is marked with Needs contributer.

Note

To avoid spending time on duplicate work or features that are unlikely to get merged, it is highly advised that you contact the developers by opening a github issue before starting to work.

When developing new features, please create a new branch from the development branch. When to submitting a pull request, make sure that all tests are still passing.

auto-sklearn安装官网(不支持Windows系统)

https://automl.github.io/auto-sklearn/master/installation.html

Installation

System requirements

auto-sklearn has the following system requirements:

For an explanation of missing Microsoft Windows and MAC OSX support please check the Section Windows/OSX compatibility.

Installing auto-sklearn

Please install all dependencies manually with:

curl https://raw.githubusercontent.com/automl/auto-sklearn/master/requirements.txt | xargs -n 1 -L 1 pip install

Then install auto-sklearn:

pip install auto-sklearn

We recommend installing auto-sklearn into a virtual environment or an Anaconda environment.

If the pip installation command fails, make sure you have the System requirements installed correctly.

Ubuntu installation

To provide a C++11 building environment and the lateste SWIG version on Ubuntu, run:

sudo apt-get install build-essential swig

Anaconda installation

Anaconda does not ship auto-sklearn, and there are no conda packages for auto-sklearn. Thus, it is easiest to install auto-sklearn as detailed in the Section Installing auto-sklearn.

A common installation problem under recent Linux distribution is the incompatibility of the compiler version used to compile the Python binary shipped by AnaConda and the compiler installed by the distribution. This can be solved by installing the gcc compiler shipped with AnaConda (as well as swig):

conda install gxx_linux-64 gcc_linux-64 swig

Windows/OSX compatibility

Windows

auto-sklearn relies heavily on the Python module resourceresource is part of Python’s Unix Specific Services and not available on a Windows machine. Therefore, it is not possible to run auto-sklearn on a Windows machine.

Possible solutions (not tested):

  • Windows 10 bash shell

  • virtual machine

  • docker image

Mac OSX

We currently do not know if auto-sklearn works on OSX. There are at least two issues holding us back from actively supporting OSX:

  • The resource module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).

  • OSX machines on travis-ci take more than 30 minutes to spawn. This makes it impossible for us to run unit tests forauto-sklearn and its dependencies SMAC3 and ConfigSpace.

In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.

Possible other solutions (not tested):

  • virtual machine

  • docker image

python信用评分卡建模(附代码,博主录制)

auto-sklearn的更多相关文章

  1. 机器学习之sklearn——聚类

    生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...

  2. 使用sklearn进行集成学习——实践

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...

  3. 谁动了我的特征?——sklearn特征转换行为全记录

    目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...

  4. sklearn两种保存模型的方式

    作者:卢嘉颖 链接:https://www.zhihu.com/question/27187105/answer/97334347 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 1. pic ...

  5. [转]使用sklearn进行集成学习——实践

    转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...

  6. ML神器:sklearn的快速使用

    传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都 ...

  7. sklearn.neighbors.kneighbors_graph的简单属性介绍

    connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, inclu ...

  8. 深入浅出KNN算法(二) sklearn KNN实践

    姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...

  9. 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

    项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...

  10. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. 电脑 DNS纪要

    电脑 DNS说明 1.电脑的DNS必须设置成114.114.114.114才能上网? 电脑的DNS不是必须设置成114.114.114.114才能上网,而只是DNS设置为这个地址刚好能够上网.设置合适 ...

  2. Seata 动态配置订阅与降级实现原理

    Seata 的动态降级需要结合配置中心的动态配置订阅功能.动态配置订阅,即通过配置中心监听订阅,根据需要读取已更新的缓存值,ZK.Apollo.Nacos 等第三方配置中心都有现成的监听器可实现动态刷 ...

  3. 利用ViewStub实现布局懒惰加载

    这个问题也是头条面试官问的,本身没什么难度,但以前确实没仔细研究过. 1.使用介绍 ViewStub是一种不可见的尺寸为0的View,用来实现布局资源的懒加载.当ViewStub被设置为用户可见或其  ...

  4. 【Flask】 python学习第一章 - 6.0 WTF表单 数据库 蓝图

    WTF表单  wtf.py pip install flask-wtf  # 安装 from flask_wtf import FlaskForm from wtform import StringF ...

  5. Tulip Festival(线段树+二分+CDQ+带修改莫队+树套树)

    题目链接 传送门 线段树\(+\)二分思路 思路 比赛看到这题时感觉是一棵线段树\(+\)主席树,然后因为不会带修改主席树就放弃了,最后发现还卡了树套树. 由于本题数据保证序列中相同的数字不会超过20 ...

  6. nginx安装记录

    1.下载nginx http://nginx.org/en/download.html         下载稳定版本,以nginx/Windows-1.12.2为例,直接下载 nginx-1.12.2 ...

  7. 珠峰 - 郭永峰react课程 node es6 babel学习笔记

    npm install babel-cli -g //安装babel babel index.js -o a.js //等同于 babel index.js --out-file a.js 复制ind ...

  8. Linux内核调试的方式以及工具集锦

    原文:https://blog.csdn.net/gatieme/article/details/68948080 CSDN GitHubLinux内核调试的方式以及工具集锦 LDD-LinuxDev ...

  9. LeetCode 1143. Longest Common Subsequence

    原题链接在这里:https://leetcode.com/problems/longest-common-subsequence/ 题目: Given two strings text1 and te ...

  10. CSP2019 J组 游记

    结果 分数出来了.100+100+10+35=245. 一等线230,擦着边进一等. (点击图片放大) 期待明年s组的表现. 第一轮 不就是初赛吗?擦边轻松水过去! 第二轮 Day -14 停两周晚自 ...