宽度学习(Broad Learning System)
一、宽度学习的前世今生
宽度学习系统(BLS) 一词的提出源于澳门大学科技学院院长陈俊龙和其学生于2018年1月发表在IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,VOL. 29, NO. 1 的一篇文章,题目叫《Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture 》。文章的主旨十分明显,就是提出了一种可以和深度学习媲美的宽度学习框架。
为什么要提出宽度学习? 众所周知,深度学习中最让人头疼之处在于其数量庞大的待优化参数,通常需要耗费大量的时间和机器资源来进行优化。
宽度学习的前身实际上是已经被人们研究了很久的随机向量函数连接网络 random vector functional-link neural network (RVFLNN),如图所示:
咋一看这网络结构没有什么奇特之处,其实也对,就是在单层前馈网络(SLFN)中增加了从输入层到输出层的直接连接。网络的第一层也叫输入层,第二层改名了,叫做增强层,第三层是输出层。具体来看,网络中有三种连接,分别是
- (输入层 => 增强层)加权后有非线性变换
- (增强层 => 输出层)只有线性变换
- (输入层 => 输出层)只有线性变换
所以在RVFLNN中只有增强层 是真正意义上的神经网络单元,因为只有它带了激活函数,网络的其他部分均是线性的。下面我们将这个网络结构扭一扭:
当我们把增强层和输入层排成一行时,将它们视为一体,那网络就成了由 A(输入层+增强层)到 Y 的线性变换了!线性变换对应的权重矩阵 W 就是 输入层加增强层 到 输出层 之间的线性连接!!
这时你可能要问:那输入层到增强层之间的连接怎么处理/优化?我们的回答是:不管它!!! 我们给这些连接随机初始化,固定不变!
如果我们固定输入层到增强层之间的权重,那么对整个网络的训练就是求出 A 到 Y 之间的变换 W,而 W 的确定非常简单:W=A−1YW = A^{-1}YW=A−1Y
输入 X 已知,就可以求出增强层 A;训练数据的标签已知,就知道了 Y。接下来的学习就是一步到位的事情了。
为什么可以这样做?
深度学习费了老劲把网络层数一加再加,就是为了增加模型的复杂度,能更好地逼近我们希望学习到的非线性函数,但是不是非线性层数越多越好呢?理论早就证明单层前馈网络(SLFN)已经可以作为函数近似器了,可见增加层数并不是必要的。RVFLNN也被证明可以用来逼近紧集上的任何连续函数,其非线性近似能力就体现在增强层的非线性激活函数上,只要增强层单元数量足够多,要多非线性有多非线性!
二、宽度学习系统(BLS)
之前介绍的是RVFLNN,现在来看BLS,它对输入层做了一点改进,就是不直接用原始数据作为输入层,而是先对数据做了一些变换,相当于特征提取,将变化后的特征作为原RVFLNN的输入层,这样做的意义不是很大,只不过想告诉你:宽度学习可以利用别的模型提取到的特征来训练,即可以可别的机器学习算法组装。现在我们不把第一层叫做输入层,而是叫它特征层。
当给定了特征 Z,直接计算增强层 H,将特征层和增强层合并成 A=[Z|H],竖线表示合并成一行。由于训练数据的标签 Y 已知,计算权重 W=A−1YW = A^{-1}YW=A−1Y 即可。实际计算时,使用岭回归 来求解权值矩阵,即通过下面的优化问题来解W(其中σ1=σ2=v=u=2\sigma_1=\sigma_2=v=u=2σ1=σ2=v=u=2):
解得
以上过程是一步到位,即当数据固定,模型结构固定,可以直接找到最优的参数 W。
然而在大数据时代,数据固定是不可能的,数据会源源不断地来。模型固定也是不现实的,因为时不时需要调整数据的维数,比如增加新的特征。这样一来,就有了针对以上网络的增量学习算法。注意,宽度学习的核心在其增量学习算法,因为当数据量上亿时,相当于矩阵 Z 或 X 有上亿行,每次更新权重都对一个上一行的矩阵求伪逆 是不现实的!
增量学习的核心就是,利用上一次的计算结果,和新加入的数据,只需少量计算就能得进而得到更新的权重。
例如:当我们发现初始设计的模型拟合能力不够,需要增加增强节点数量来减小损失函数。这时,我们给矩阵 A 增加一列 a,表示新增的增强节点,得到[A|a],这时要计算新的权值矩阵,就需要求 [A∣a]−1[A|a]^{-1}[A∣a]−1,于是问题就转化成分块矩阵的广义逆问题,得到了[A∣a]−1[A|a]^{-1}[A∣a]−1,则更新的权重为 Wnew=[A∣a]−1YW_{new} = [A|a]^{-1}YWnew=[A∣a]−1Y,具体解形式如下,可以看到,Wn+1W_{n+1}Wn+1中用到了更新之前的权值矩阵WnW_{n}Wn,因而有效地减少了更新权重的计算量。
第一次计算权值是用的是 岭回归 算法,因为有迭代过程,可能计算时间稍长。但是第二次、三次……计算时都只涉及矩阵的乘法,所以权值矩阵的更新是非常迅速。相比深度学习的反复训练,时常陷入局部最优无法自拔,宽度学习的优势非常明显
宽度学习(Broad Learning System)的更多相关文章
- Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记
Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- Stanford机器学习笔记-7. Machine Learning System Design
7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to W ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- Machine Learning - XI. Machine Learning System Design机器学习系统的设计(Week 6)
http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- Lessons learned developing a practical large scale machine learning system
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...
随机推荐
- 2019qbxt游记
Day 1 2019.8.6 来到qbxt的第一天,虽然早就对宾馆的等级做好了准备,但是还是十分的失望,外观是真的很简陋,不过里面还好的,,可以凑合. 我竟然和lbh一个宿舍!!!这次外出学习必将不安 ...
- 【JZOJ6223】【20190617】互膜
题目 小\(A\)和小\(B\)在一个长度为\(2n\)的数组上面博弈,初始时奇数位置为A,偶数位置为B 小\(A\)先手,第\(i\)次操作的人可以将\(i\)或者\(i+1\)位置的值反转(也可以 ...
- delphi调用https接口
delphi调用http接口直接使用idhttp就可以了,但是调用https接口的时候就需要和IdSSLIOHandlerSocket1控件一起使用. 截图中是两个控件的具体配置,需要注意的是IdSS ...
- Spark在美团的实践
https://tech.meituan.com/2016/03/31/spark-in-meituan.html 本文已发表在<程序员>杂志2016年4月期. 前言 美团是数据驱动的互联 ...
- 用gmsh做前处理
原视频下载地址: https://pan.baidu.com/s/1i4Y9fbJ 密码: 7rkb
- shell中$(( ))、$( )、``与${ }的区别
转 :shell $(( )).$( ).``与${ }的区别 $( )与` `(反引号)命令替换 在bash中,$( )与` `(反引号)都是用来作命令替换的.命令替换与变量替换差不多,都是用来重组 ...
- SpringMVC(下)
一.访问静态资源 在进行Spring MVC的配置时,通常我们会配置一个dispatcher servlet用于处理对应的URL 在设置url-pattern时可以设置三种形式 (1)/* :拦截所有 ...
- spring @Transactional 事务注解的坑
1. 在需要事务管理的地方加@Transactional 注解.@Transactional 注解可以被应用于接口定义和接口方法.类定义和类的 public 方法上. 2. @Transactiona ...
- jmeter元件作用及执行顺序
jmeter是一个开源的性能测试工具,它可以通过鼠标拖拽来随意改变元件之间的顺序以及元件的父子关系,那么随着它们的顺序和所在的域不同,它们在执行的时候,也会有很多不同. jmeter的test pla ...
- Pytorch IO提速
1. 把内存变成硬盘,把需要读的数据塞到里面去,加快了io. Optimizing PyTorch training code 如何给你PyTorch里的Dataloader打鸡血 轻轻松松为你的Li ...