大意: $n$天, 第$i$天要$a_i$个志愿者. $m$种志愿者, 每种无限多, 第$i$种工作时间$[s_i,t_i]$花费$c_i$, 求最少花费.

源点$S$连第一天, 容量$INF$

第$n+1$天连汇点$T$, 容量$INF$

第$i$天往后连$INF-a_i$

每个志愿者连$s_i$到$t_i+1$, 容量$INF$, 费用$c_i$

求出$S$到$T$的最小费用最大流即可

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <cstring>
#include <bitset>
#include <functional>
#include <random>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;})
using namespace std;
typedef long long ll;
const int N = 1e6+, INF = 0x3f3f3f3f, S = N-, T = N-;
int n, m, flow;
struct edge {
int to,w,v,next;
edge(int to=,int w=,int v=,int next=):to(to),w(w),v(v),next(next){}
} e[N];
int head[N], dep[N], vis[N], cur[N], f[N], cnt=;
int pre[N],pre2[N];
queue<int> Q;
ll cost;
int spfa() {
REP(i,,n+) f[i]=dep[i]=INF,vis[i]=;
f[S]=dep[S]=f[T]=dep[T]=INF;
dep[S]=,Q.push(S);
while (Q.size()) {
int u = Q.front(); Q.pop();
vis[u] = ;
for (int i=head[u]; i; i=e[i].next) {
if (dep[e[i].to]>dep[u]+e[i].v&&e[i].w) {
dep[e[i].to]=dep[u]+e[i].v;
pre[e[i].to]=u,pre2[e[i].to]=i;
f[e[i].to]=min(f[u],e[i].w);
if (!vis[e[i].to]) {
vis[e[i].to]=;
Q.push(e[i].to);
}
}
}
}
return dep[T]!=INF;
}
void EK(){
while(spfa()) {
int w = f[T];
for (int u=T; u!=S; u=pre[u]) {
e[pre2[u]].w-=w;
e[pre2[u]^].w+=w;
}
flow += w, cost += (ll)w*dep[T];
}
}
void add(int u, int v, int w, int k) {
e[++cnt] = edge(v,w,k,head[u]);
head[u] = cnt;
e[++cnt] = edge(u,,-k,head[v]);
head[v] = cnt;
} int main() {
scanf("%d%d",&n,&m);
REP(i,,n) {
int t;
scanf("%d",&t);
add(i,i+,INF-t,);
}
add(S,,INF,);
add(n+,T,INF,);
REP(i,,m) {
int s,t,c;
scanf("%d%d%d",&s,&t,&c);
add(s,t+,INF,c);
}
EK();
printf("%lld\n",cost);
}

[NOI2008]志愿者招募 (费用流)的更多相关文章

  1. BZOJ 1061: [Noi2008]志愿者招募 费用流

    1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...

  2. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

  3. P3980 [NOI2008]志愿者招募 费用流 (人有多大胆地有多大产

    https://www.luogu.org/problemnew/show/P3980 感觉费用流比网络流的图更难想到,要更大胆.首先由于日期是连续的,所以图中的点是横向排列的. 这道题有点绕道走的意 ...

  4. P3980 [NOI2008]志愿者招募 (费用流)

    题意:最多1000天 每天需要至少ai个工人施工 有10000种工人可以雇佣 每种工人可以工作si到ti天 雇佣一个的花费是ci 问怎样安排使得施工花费最少 思考:最直白的建模方式 就是每种工人可以和 ...

  5. Vijos1825 NOI2008 志愿者招募 费用流

    Orz ByVoid大神的题解:https://www.byvoid.com/blog/noi-2008-employee/ 学习网络流建图的好题,不难想到线性规划的模型,不过利用模型的特殊性,结合网 ...

  6. 从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流)

    从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流) 题面 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运 ...

  7. [NOI2008][bzoj1061] 志愿者招募 [费用流+巧妙的建图]

    题面 传送门 思路 引入:网络流? 看到这道题,第一想法是用一个dp来完成决策 但是,显然这道题的数据并不允许我们进行dp,尤其是有10000种志愿者的情况下 那么我们就要想别的办法来解决: 贪心?这 ...

  8. bzoj 1061 志愿者招募 费用流

    详见BYV的博客,写的非常全面https://www.byvoid.com/blog/noi-2008-employee /************************************** ...

  9. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

随机推荐

  1. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  2. Linux+Tomcat环境下安装SSL证书

    1.将申请好的证书(4个文件)文件放入/home/tomcat/apache-tomcat-9.0.12/conf/cert文件夹下2.(或者)将申请好的证书(4个文件)文件放入/home/tomca ...

  3. java开源工具包-Jodd框架

    java开源工具包-Jodd框架 /    2019-07-24 Jodd是一个Java工具包和微型框架,Jodd 工具包含一些实用的工具类和小型框架,增强了 JDK 提供很多强大的功能,可以帮助实现 ...

  4. javascript数组遍历的几种常用方法性能分析对比

    前言: 数组遍历有很多种方法,虽然不同方法有不同的特性及适用环境,除了普通飞for循环之外,for...in能直接输出数组元素的索引,for...of能直接输出数组元素的值,map则可以直接生成新的数 ...

  5. SpringBoot入门-概念(一)

    SpringBoot是什么 Spring boot是一个构建在Spring框架之上.以一种更加简单快捷的方式来配置和运行web应用程序的开源框架. 为什么用SpringBoot 可以解决普通的java ...

  6. Ubuntu 配置镜像源

    Ubuntu 配置镜像源 注, 如果添加镜像后没有自己要安装的软件, 切回原镜像即可, 只是有点慢. cp /etc/apt/sources.list /etc/apt/sources.list.ba ...

  7. Pytorch IO提速

    1. 把内存变成硬盘,把需要读的数据塞到里面去,加快了io. Optimizing PyTorch training code 如何给你PyTorch里的Dataloader打鸡血 轻轻松松为你的Li ...

  8. pytorch中调用C进行扩展

    pytorch中调用C进行扩展,使得某些功能在CPU上运行更快: 第一步:编写头文件 /* src/my_lib.h */ int my_lib_add_forward(THFloatTensor * ...

  9. plsql 32位,Oracle Client 64位 无法读取tnsnames.ora文件

    ORACLE_HOME=C:\app\fjz\product\11.2.0\client_1 1)设置windows系统环境变量: TNS_ADMIN=C:\app\fjz\product\11.2. ...

  10. git bush 无法使用箭头进行选择

    1 找到git bash 的安装目录,找到bash.bashrc文件, 2 在文件的尾部加上:alias vue='winpty vue.cmd', 3 重启git bash 即可 来自:https: ...