二次剩余定理及Cipolla算法入门到自闭
二次剩余定义:
在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余。例如:x2≡n(mod p)。否则,则q为模n意义下的二次非剩余。
Cipolla算法:一个解决二次剩余强有力的工具,用来求得上式的x的一个算法。
需要学习的数论及数学基础:勒让德符号、欧拉判别准则和复数运算。
勒让德符号:判断n是否为p的二次剩余,p为奇质数。
欧拉定理为xφ(p)≡1(mod p)
当p为素数时,可知φ(p)=p-1,转化为xp-1≡1(mod p)
开根号后为 x(p−1)/2≡±1(mod p),如果等于1就肯定开的了方,为-1一定开不了。所以x是否为n的二次剩余就用这个欧拉判别准则。
qpow(n,(mod-)>>)==mod-
随机找数a,使得a2−n为复数的虚数单位的平方,即
随机一个数a,然后对a2−n进行开方操作(就是计算他勒让德符号的值),直到他们的勒让德符号为-1为止(就是开不了方为止)。 就是找到一个a满足(a2−n)(p−1)/2=−1。
LL a=;
while(qpow((a*a-n+mod)%mod,(mod-)>>)!=mod-) a=rand()%mod;
建立复数乘法运算((a+bi)(c+di)=(ac+bd*(-1))+(bc+ad)i)
建立一个类似的域,前面寻找了一个a使(a2−n)(p−1)/2=−1,所以我们定义ω=√(a2−n)。那么现在的ω也像i一样,满足ω2=a2−n=-1
node two(node a,node b)//复数相乘
{
node ans;
ans.x=(a.x*b.x%mod+a.y*b.y%mod*w%mod)%mod;
ans.y=(a.x*b.y%mod+a.y*b.x%mod)%mod;
return ans;
}
答案=(a+ω)(p+1)/2
根据拉格朗日定理,可以得出虚数处的系数一定为0。
node q_pow(node a,LL b){
node res;
res.x=,res.y=;
while(b){
if(b&)res=two(res,a);
a=two(a,a);
b>>=;
}
return res;
}
node p;
p.x=a,p.y=,w=(a*a-n+mod)%mod;
node ans=q_pow(p,(mod+)>>);
return ans.x;
2019牛客多校训练营第九场B题为Cipolla算法模板题
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod=1e9+;
struct node
{
LL x,y;
};
LL w;
node two(node a,node b)//复数相乘
{
node ans;
ans.x=(a.x*b.x%mod+a.y*b.y%mod*w%mod)%mod;
ans.y=(a.x*b.y%mod+a.y*b.x%mod)%mod;
return ans;
}
node q_pow(node a,LL b)
{
node res;
res.x=,res.y=;
while(b)
{
if(b&)
res=two(res,a);
a=two(a,a);
b>>=;
}
return res;
}
LL qpow(LL a,LL b)
{
LL ans=;
a%=mod;
while(b)
{
if(b&)
ans=ans*a%mod;
a=a*a%mod,b>>=;
}
return ans;
}
LL solve(LL n)
{
if(qpow(n,(mod-)>>)==mod-)//勒让德符号
return -;
else if(n==)
return ;
LL a=;//找随机a
while(qpow((a*a-n+mod)%mod,(mod-)>>)!=mod-)//勒让德符号
a=rand()%mod;
node p;
p.x=a,p.y=,w=(a*a-n+mod)%mod;
node ans=q_pow(p,(mod+)>>);//求出答案
return ans.x;
}
int main()
{
int T;
scanf("%d",&T);
LL q,b,n,x,y,c,t=qpow(,mod-);
while(T--)
{
scanf("%lld%lld",&b,&c);
q=(b*b-*c+mod)%mod;
n=solve(q);
if(n==-)
{
printf("-1 -1\n");
continue;
}
x=((b+n)%mod)*t%mod,y=(b-x+mod)%mod;
if(x>y)
swap(x,y);
printf("%lld %lld\n",x,y);
}
return ;
}
二次剩余定理及Cipolla算法入门到自闭的更多相关文章
- 二次剩余Cipolla算法学习笔记
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...
- Cipolla算法学习小记
转自:http://blog.csdn.net/doyouseeman/article/details/52033204 简介 Cipolla算法是解决二次剩余强有力的工具,一个脑洞大开的算法. 认真 ...
- 贝叶斯公式由浅入深大讲解—AI基础算法入门
1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定 ...
- 贝叶斯公式由浅入深大讲解—AI基础算法入门【转】
本文转载自:https://www.cnblogs.com/zhoulujun/p/8893393.html 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生, ...
- Cipolla算法学习笔记
学习了一下1个$\log$的二次剩余.然后来水一篇博客. 当$p$为奇素数的时候,并且$(n, p) \equiv 1 \pmod{p}$,用Cipolla算法求出$x^2 \equiv n \pmo ...
- URAL 1132 Square Root(二次剩余定理)题解
题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...
- 【转】 SVM算法入门
课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...
- 三角函数计算,Cordic 算法入门
[-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来 ...
- 循环冗余校验(CRC)算法入门引导
目录 写给嵌入式程序员的循环冗余校验CRC算法入门引导 前言 从奇偶校验说起 累加和校验 初识 CRC 算法 CRC算法的编程实现 前言 CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式.在嵌 ...
随机推荐
- 【洛谷P5050】 【模板】多项式多点求值
code: #include <bits/stdc++.h> #define ll long long #define ull unsigned long long #define set ...
- LSTM的结构
- tensorflow学习笔记(二)
tensorflow中自带的mnist手写数字识别,运用最简单的单层神经网络,softmax激活函数,极客学院上说准确率有91%,我今天调整到了92%! import tensorflow as tf ...
- 【00NOIP普及组】税收与补贴问题(信息学奥赛一本通 1911)( 洛谷 1023)
[题目描述] 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给 定的最高价位后,销量以某固定 ...
- vuex如何实现数据持久化,刷新页面存储的值还存在
1.安装: npm install vuex-persistedstate --save 2.找到store/index.js import Vue from 'vue' import Vuex fr ...
- Eclipse R语言开发环境搭建 StatET插件
StatET 官网 http://www.walware.de/goto/statet Installation 点击菜单栏 help --> Install New Software 配置R语 ...
- D3.js的v5版本入门教程(第七章)—— 比例尺的使用
D3.js的v5版本入门教程(第七章) 比例尺在D3.js中是一个很重要的东西,我们可以这样理解d3.js中的比例尺——一种映射关系,从domain映射到range域(为什么会是domain和rang ...
- Redis代码示例
RedisTemplate 如果想要在java中使用Redis相关的数据结构,要先注入RedisTemplate. @Autowired private RedisTemplate<K,V> ...
- 作业——10 分布式文件系统HDFS 练习
作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3292 利用Shell命令与HDFS进行交互 以”./bin/dfs ...
- C# 反射、使用场景
创建一个 Console 控制台应用程序, 1. 创建一个 Project 类 public class Project { public int ID { get; set; } public st ...