本文主要介绍AlextNet的一些知识,这些知识经常被忽略

一、AlextNet的创新点

(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。

使用Relu的优点如下:
    1>因为正半轴为向上升的函数,所以好求导,提升了计算速度
    2>同样的因为正半轴为向上升的函数,所以相比sigmoid函数不会梯度消散
    3>负半轴为0,所以增加了网络的稀疏性
    4>非线性

(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。

    1>Dropout之所以能够防止过拟合是因为,当dropout掉一些神经元时就相当于对不同的网络进行正向和反向传播,整个dropout的过程就相当于对多个不同的神经网络取平均,一些互为反向的拟合相互抵消

(3)在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。

(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

(5)使用CUDA加速深度卷积网络的训练,利用GPU强大的并行计算能力,处理神经网络训练时大量的矩阵运算。AlexNet使用了两块GTX 580 GPU进行训练,单个GTX 580只有3GB显存,这限制了可训练的网络的最大规模。因此作者将AlexNet分布在两个GPU上,在每个GPU的显存中储存一半的神经元的参数。因为GPU之间通信方便,可以互相访问显存,而不需要通过主机内存,所以同时使用多块GPU也是非常高效的。同时,AlexNet的设计让GPU之间的通信只在网络的某些层进行,控制了通信的性能损耗。 

(6)数据增强,随机地从256256的原始图像中截取224224大小的区域(以及水平翻转的镜像),相当于增加了2*(256-224)^2=2048倍的数据量。如果没有数据增强,仅靠原始的数据量,参数众多的CNN会陷入过拟合中,使用了数据增强后可以大大减轻过拟合,提升泛化能力。进行预测时,则是取图片的四个角加中间共5个位置,并进行左右翻转,一共获得10张图片,对他们进行预测并对10次结果求均值。同时,AlexNet论文中提到了会对图像的RGB数据进行PCA处理,并对主成分做一个标准差为0.1的高斯扰动,增加一些噪声,这个Trick可以让错误率再下降1%。

二、防止过拟合和欠拟合的方法
1、防过拟合

(1)增加训练样本
(2)加入正则化
(3)dropout
(4)提前停止

2、防欠拟合

(1)加特征
(2)加多项式次数
(3)减小正则化的系数

三、训练步骤

图像输入---->提取图像特征---->前向传播和后向传播---->预测

四、学会SAME、VALID在conv和pool的运用

链接

五、其他

会计算链接数,知道AlexNet有5个卷积层,2个全链接层,采用了全局最大池化、dropout、数据增强技术防过拟合

最后的疑问

卷积核是怎么算的?怎样算是一个卷积核,卷积核的可视化(仔细看看)

四大网络之Alexnet的更多相关文章

  1. 四大网络VGGNet

    一.特点 1.对AlexNet改进,在第一个卷积层用了更小的卷积核和stride 2.多尺度训练(训练和测试时,采用整张图的不同尺度) 由此,VGG结构简单,提取特征能力强,应用场景广泛 由单尺度测试 ...

  2. 第十六节,卷积神经网络之AlexNet网络实现(六)

    上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...

  3. CNN网络架构演进:从LeNet到DenseNet

    卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF ...

  4. 【Semantic segmentation Overview】一文概览主要语义分割网络(转)

    文章来源:https://www.tinymind.cn/articles/410 本文来自 CSDN 网站,译者蓝三金 图像的语义分割是将输入图像中的每个像素分配一个语义类别,以得到像素化的密集分类 ...

  5. 深度学习之ResNet网络

    介绍 Resnet分类网络是当前应用最为广泛的CNN特征提取网络. 我们的一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力.凭着这一基本准则CNN分类网络自Alexnet的7层发展到 ...

  6. Squeeze Excitation Module 对网络的改进分析

    Squeeze-and-Excitation Networks SE-net 来自于Momenta 孙刚团队 SE的设计思路: 从卷积操作的实际作用来考虑,conv 把局部空间信息和通道信息组合起来, ...

  7. AlexNet,VGG,GoogleNet,ResNet

    AlexNet: VGGNet: 用3x3的小的卷积核代替大的卷积核,让网络只关注相邻的像素 3x3的感受野与7x7的感受野相同,但是需要更深的网络 这样使得参数更少 大多数内存占用在靠前的卷积层,大 ...

  8. #ICCV2019论文阅读#Fully_convolutional_Features

    一 知识背景 3D scan&cloud points(点云)patch-based features,fully convolutional network, deep metric lea ...

  9. 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)

    Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...

随机推荐

  1. tomcat-修改端口--号

    1.背景 在默认情况下,tomcat的端口是8080,使用了两个tomcat,那么就需要修改其中的一个的端口号才能使得两个同时工作. 2.方法 2.1改动一 那么,如何修改tomcat的端口号呢?首先 ...

  2. 47 容器(六)——HashMap

    HashMap的概念 HashMap底层实现了哈希表,这是一种非常重要的数据结构,对于以后我们理解很多技术都有帮助,例如 redis数据库的核心技术和HashMap一样,因此,非常有必要让大家理解. ...

  3. PAT(B) 1040 有几个PAT(Java)

    题目链接:1040 有几个PAT (25 point(s)) 题目描述 字符串 APPAPT 中包含了两个单词 PAT,其中第一个 PAT 是第 2 位§,第 4 位(A),第 6 位(T):第二个 ...

  4. Python3定时器任务代码

    使用threading写的一个定时器任务demo: import time import sys import signal import datetime import threading #定时器 ...

  5. 解决SQL server 18740、18456登录失败问题

    第一步:使用window管理员用户登录SQL server 第二步:如下图步骤(开始配置sa默认用户) 第三步:选择角色类型 第四步:选择和配置用户映射的数据库 第五步:授予允许连接,并开启登录权限 ...

  6. linux安装go开发环境

    1下载go wget https://studygolang.com/dl/golang/go1.12.7.linux-amd64.tar.gz执行此命令会将go1.12.7.linux-amd64. ...

  7. iOS核心动画(基础篇)

    Core Animation相关内容基本介绍 此框架把屏幕上的内容组合起来,这个内容被分解成图层,放到图层树中,这个树形成了你能在应用程序看到的内容的基础 图层在iOS中就是CALayer类 当我们创 ...

  8. Java性能调优—— VisualVM工具基本使用及监控本地和远程JVM进程超详细使用教程

  9. .net语音播放,自定义播报文字

    // using System.Speech.Synthesis; SpeechSynthesizer synth = new SpeechSynthesizer(); // Configure th ...

  10. postman 测试Api接口注意事项

    1.简单数据传输 2.对象传输 使用的是post方式请求 在Headers设置: 在Body写入对象信息,主要红线的地方:1.raw选中 2.j'son格式 form表单提交数据测试 在header里 ...