链接:

https://vjudge.net/problem/LightOJ-1246

题意:

You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is

|x1 - x2| + |y1 - y2|

For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.

After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.

You have to determine how many ways to color the board using those K colors.

思路:

将图分为两个部分,任意一个部分的点到另一个部分的任意一个点的距离都是奇数。

这样就转变成了一个DP,Dp[i][j]表示n个位置,放了j种颜色。

Dp[i][j] = Dp[i-1][j-1]j+Dp[i-1][j]j

再用组合数分配一下两个部分的颜色。

代码:

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10; int n, m, k;
LL Dp[410][55];
LL c[55][55]; void Init()
{
memset(c, 0, sizeof(c));
for (int i = 0;i < 55;i++)
{
c[i][0] = 1;
for (int j = 1;j <= i;j++)
{
c[i][j] = (c[i-1][j-1] + c[i-1][j])%MOD;
}
}
for (int i = 1;i < 410;i++)
{
Dp[i][1] = 1;
for (int j = 2;j < 55;j++)
{
Dp[i][j] = (Dp[i-1][j-1]*j+Dp[i-1][j]*j)%MOD;
}
}
} int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%d%d%d", &n, &m, &k);
n++, m++;
LL ans = 0;
if (n == m && m == 1)
ans = k;
else
{
int sum1 = 0, sum2 = 0;
sum1 = ((n+1)/2)*((m+1)/2)+(n/2)*(m/2);
sum2 = n*m-sum1;
for (int i = 1;i < k;i++)
{
for (int j = 1;i+j <= k;j++)
ans = (ans + c[k][i]*c[k-i][j]%MOD*Dp[sum1][i]%MOD*Dp[sum2][j]%MOD)%MOD;
}
}
printf(" %lld\n", ans);
} return 0;
}

LightOJ - 1246 - Colorful Board(DP)的更多相关文章

  1. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

  2. 1246 - Colorful Board

    1246 - Colorful Board    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...

  3. lightoj 1032 二进制的dp

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1032 #include <cstdio> #include <cst ...

  4. lightOJ 1017 Brush (III) DP

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1017 搞了一个下午才弄出来,,,,, 还是线性DP做的不够啊 看过数据量就知道 ...

  5. lightoj 1381 - Scientific Experiment dp

    1381 - Scientific Experiment Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lightoj.com/vo ...

  6. LightOJ 1068 Investigation (数位dp)

    problem=1068">http://www.lightoj.com/volume_showproblem.php?problem=1068 求出区间[A,B]内能被K整除且各位数 ...

  7. Lightoj 1044 - Palindrome Partitioning (DP)

    题目链接: Lightoj  1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...

  8. lightoj 1084 - Winter(dp+二分+线段树or其他数据结构)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1084 题解:不妨设dp[i] 表示考虑到第i个点时最少有几组那么 if a[i ...

  9. (LightOJ 1030)期望dp

    You are x N grid. Each cell of the cave can contain any amount of gold. Initially you are . Now each ...

随机推荐

  1. Linux05 文件或目录的权限(ls、lsattr、chattr、chmod、chown、chgrp、file)

    一.查看文件或目录的权限:ls -al  文件名/目录名 keshengtao@LAPTOP-F9AFU4OK:~$ ls -al total drwxr-xr-x keshengtao keshen ...

  2. 链表习题(6)-链表返回倒数第k个数的位置的值

    /*链表返回倒数第k个数的位置的值*/ /* 算法思想:先取得链表的长度len,之后获取len-k+1的位置元素的值 */ Elemtype Getelem_rear(LinkList L, int ...

  3. 常用Tables控件介绍(三)

    向datagrid中添加临时记录: 代码: $(function(){ fun={ add:function(){ $.ajaxSettings.async=false; var rows=$('#d ...

  4. 二次剩余定理及Cipolla算法入门到自闭

    二次剩余定义: 在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余.例如:x2≡n(mod p).否则,则q为模n意义下的二次非剩余. Cipolla算法:一个解决 ...

  5. Linux的软连接、硬链接和find命令

    软链接和硬链接 序号 命令 作用 01 ln –s 被链接的源文件 链接文件 建立文件的软连接,用通俗的是方式类似于Windows下的快捷链接 源文件连接要是有绝对路径,不能使用相对路径,这样可以方便 ...

  6. openstack-nova源码之创建虚拟机

    1.nova/api/openstack/compute/servers.py  create() 在create函数前面包含三种装饰器,分别为:@wsgi.response.@wsgi.expect ...

  7. 使用 Angular RouteReuseStrategy 缓存(路由)组件

    使用 Angular RouteReuseStrategy 缓存组件 Cache components with Angular RouteReuseStrategy RouteReuseStrate ...

  8. 全栈项目|小书架|服务器开发-Koa2 参数校验处理

    为什么需要做参数校验 在开发中,无论是App开发还是服务器接口开发, 我们无法去预测用户传入的数据,因此参数(数据)校验是开发中不可或缺的一环. 例如像App的注册登录表单提交页面,就要做好多层的判断 ...

  9. cocos版本说明

    一直知道cocos是做游戏的,想学习一下,结果去官网一看就懵逼了.Cocos Creator,Cocos2d-x,cocos studio,Cocos2d-js,Cocos2d-x-lua,那一种才是 ...

  10. Java调用WebService方法总结(6)--XFire调用WebService

    XFire是codeHaus组织提供的一个WebService开源框架,目前已被Apache的CXF所取代,已很少有人用了,这里简单记录下其调用WebService使用方法.官网现已不提供下载,可以到 ...