LightOJ - 1246 - Colorful Board(DP)
链接:
https://vjudge.net/problem/LightOJ-1246
题意:
You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is
|x1 - x2| + |y1 - y2|
For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.
After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.
You have to determine how many ways to color the board using those K colors.
思路:
将图分为两个部分,任意一个部分的点到另一个部分的任意一个点的距离都是奇数。
这样就转变成了一个DP,Dp[i][j]表示n个位置,放了j种颜色。
Dp[i][j] = Dp[i-1][j-1]j+Dp[i-1][j]j
再用组合数分配一下两个部分的颜色。
代码:
// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
int n, m, k;
LL Dp[410][55];
LL c[55][55];
void Init()
{
memset(c, 0, sizeof(c));
for (int i = 0;i < 55;i++)
{
c[i][0] = 1;
for (int j = 1;j <= i;j++)
{
c[i][j] = (c[i-1][j-1] + c[i-1][j])%MOD;
}
}
for (int i = 1;i < 410;i++)
{
Dp[i][1] = 1;
for (int j = 2;j < 55;j++)
{
Dp[i][j] = (Dp[i-1][j-1]*j+Dp[i-1][j]*j)%MOD;
}
}
}
int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%d%d%d", &n, &m, &k);
n++, m++;
LL ans = 0;
if (n == m && m == 1)
ans = k;
else
{
int sum1 = 0, sum2 = 0;
sum1 = ((n+1)/2)*((m+1)/2)+(n/2)*(m/2);
sum2 = n*m-sum1;
for (int i = 1;i < k;i++)
{
for (int j = 1;i+j <= k;j++)
ans = (ans + c[k][i]*c[k-i][j]%MOD*Dp[sum1][i]%MOD*Dp[sum2][j]%MOD)%MOD;
}
}
printf(" %lld\n", ans);
}
return 0;
}
LightOJ - 1246 - Colorful Board(DP)的更多相关文章
- LightOJ - 1246 Colorful Board(DP+组合数)
http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...
- 1246 - Colorful Board
1246 - Colorful Board PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...
- lightoj 1032 二进制的dp
题目链接:http://lightoj.com/volume_showproblem.php?problem=1032 #include <cstdio> #include <cst ...
- lightOJ 1017 Brush (III) DP
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1017 搞了一个下午才弄出来,,,,, 还是线性DP做的不够啊 看过数据量就知道 ...
- lightoj 1381 - Scientific Experiment dp
1381 - Scientific Experiment Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lightoj.com/vo ...
- LightOJ 1068 Investigation (数位dp)
problem=1068">http://www.lightoj.com/volume_showproblem.php?problem=1068 求出区间[A,B]内能被K整除且各位数 ...
- Lightoj 1044 - Palindrome Partitioning (DP)
题目链接: Lightoj 1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...
- lightoj 1084 - Winter(dp+二分+线段树or其他数据结构)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1084 题解:不妨设dp[i] 表示考虑到第i个点时最少有几组那么 if a[i ...
- (LightOJ 1030)期望dp
You are x N grid. Each cell of the cave can contain any amount of gold. Initially you are . Now each ...
随机推荐
- AR*客户地点分配OU
DECLARE p_cust_acct_site_rec hz_cust_account_site_v2pub.cust_acct_site_rec_type; p_cust_site_use_rec ...
- Centos 7 替换镜像源
1 备份原始源 [root@localhost ~]# mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.b ...
- java之hibernate之基于主键的双向一对一关联映射
这篇 基于主键的双向一对一关联映射 1.依然考察人和身份证的一对一关系,如果采用主键关联,那么其表结构为: 2.类结构 Person.java public class Person implemen ...
- (一) CentOS 7 进行 Docker CE 安装
参考并感谢 官方文档: https://docs.docker.com/install/linux/docker-ce/centos/ 卸载旧版本 # 停止所有正在运行的容器 docker stop ...
- Mycat分布式数据库架构解决方案--Mycat的介绍
echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 如果我 ...
- 【转载】关于SimpleDateFormat安全的时间格式化线程安全问题
想必大家对SimpleDateFormat并不陌生.SimpleDateFormat 是 Java 中一个非常常用的类,该类用来对日期字符串进行解析和格式化输出,但如果使用不小心会导致非常微妙和难以调 ...
- HTML知识整理
以下是自己对以前所学的部分HTML相关知识进行的简单的梳理,水平有限,若有问题的地方,还请见谅. 1. 常用的浏览器及浏览器内核分别是什么? IE:Trident 内核 Firefox:gecko 内 ...
- SAP NOTE 1999997 - FAQ: SAP HANA Memory
Symptom You have questions related to the SAP HANA memory. You experience a high memory utilization ...
- jenkins rpm卸载
rpm卸载 1.rpm -e jenkins rpm -ql jenkins 检查是否卸载成功 2.彻底删除残留文件:find / -iname jenkins | xargs -n 1000 rm ...
- M - Ordering Tasks(拓扑排序)
M - Ordering Tasks Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descri ...