P4462 [CQOI2018]异或序列 莫队
题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\)。
莫队。我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bigoplus k]\) 。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char s; while(!isdigit(s=getchar())) f=s=='-'?-1:f;
do x=x*10+(s^48); while(isdigit(s=getchar())); return x*f;
} const int N=100010;
int n,m,k,B,anss,a[N],c[N<<1],ans[N];
struct node { int l,r,id,pos;
inline bool operator < (const node& that) const
{return pos==that.pos?pos&1?r<that.r:r>that.r:pos<that.pos;}
}q[N];
inline void add(int x) {anss+=c[x^k],++c[x];}
inline void sub(int x) {--c[x],anss-=c[x^k];}
inline void main() {
n=g(),m=g(),k=g(); B=sqrt(n+1);
for(R i=1;i<=n;++i) a[i]=g()^a[i-1];
for(R i=1;i<=m;++i)
q[i].l=g()-1,q[i].r=g(),q[i].id=i,q[i].pos=q[i].l/B+1;
sort(q+1,q+m+1);
for(R i=1,l=1,r=0,LL,RR,id;i<=m;++i) {
LL=q[i].l,RR=q[i].r,id=q[i].id;
while(l<LL) sub(a[l++]); while(l>LL) add(a[--l]);
while(r<RR) add(a[++r]); while(r>RR) sub(a[r--]); ans[id]=anss;
} for(R i=1;i<=m;++i) printf("%d\n",ans[i]);
}
} signed main() {Luitaryi::main(); return 0;}
2019.11.25
P4462 [CQOI2018]异或序列 莫队的更多相关文章
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- luogu P4462 [CQOI2018]异或序列 |莫队
题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- BZOJ5301:[CQOI2018]异或序列(莫队)
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
- [CQOI2018]异或序列 (莫队,异或前缀和)
题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...
- CQOI2018异或序列 [莫队]
莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
打广告->[这里](https://www.cnblogs.com/bztMinamoto/p/9538115.html) 我蠢了…… 如果$a_{l} xor ...a_{r}=k$,那么只要 ...
- 【CQOI2018】异或序列 - 莫队
题目描述 已知一个长度为n的整数数列 $a_1,a_2,...,a_n$,给定查询参数l.r,问在 $a_l,a_{l+1},...,a_r$ 区间内,有多少子序列满足异或和等于k.也就是说,对于 ...
随机推荐
- python3检测ossfs可用性+钉钉通知
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-12-02 15:16 # @Author : Anthony # @Emai ...
- CMDB和自动化运维
CMDB和自动化运维 IT运维的分类 IT运维,指的是对已经搭建好的网络,软件,硬件进行维护.运维领域也是细分的,有硬件运维和软件运维 硬件运维主要包括对基础设施的运维,比如机房的设备,主机的硬盘,内 ...
- gorm 批量插入数据
使用gorm 插入数据的时候,根据官方文档可以使用Create或者FirstOrCreate(). 但是官方没有提供批量插入数据的方法. 根据github的 issue得知,我们可以通过自己拼接sql ...
- Centos 7系统在线安装docker
在线安装docker 以下操作步骤均在root用户下操作 1. 检查内核是否符合要求 Docker 要求 Centos系统的内核版本高于 3.10 ,建议在Centos 7版本命令如下: uname ...
- C# vb .net实现发光效果
在.net中,如何简单快捷地实现Photoshop滤镜组中的发光效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一步 ...
- 页面、 ajax 、mock
页面1: //html <form action = "" method="post" name="loginForm"> & ...
- flutter报错--ProcessException: Process... gradlew.bat ...exited abnormally
在 VScode 中 debug flutter 是遇到如下问题: ProcessException: Process "G:\demo\flutter\hello_word\android ...
- C# NPOI Excel 合并单元格和取消单元格
1.合并单元操作 //合并单元格 /** 第一个参数:从第几行开始合并 第二个参数:到第几行结束合并 第三个参数:从第几列开始合并 第四个参数:到第几列结束合并 **/ CellRangeAddres ...
- Linux命令——watch
参考:Linux watch Command Tutorial for Beginners (5 Examples) 前言 有的时候我们想重复执行某一命令,通过该命令的输出进而获知系统某些信息.wat ...
- 运维开发笔记整理-URL配置
运维开发笔记整理-URL配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.URL路由 对于高质量的Web应用来说,使用简洁,优雅的URL的路由是一个非常值得重视的细节.Dja ...