题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\)。

莫队。我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bigoplus k]\) 。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char s; while(!isdigit(s=getchar())) f=s=='-'?-1:f;
do x=x*10+(s^48); while(isdigit(s=getchar())); return x*f;
} const int N=100010;
int n,m,k,B,anss,a[N],c[N<<1],ans[N];
struct node { int l,r,id,pos;
inline bool operator < (const node& that) const
{return pos==that.pos?pos&1?r<that.r:r>that.r:pos<that.pos;}
}q[N];
inline void add(int x) {anss+=c[x^k],++c[x];}
inline void sub(int x) {--c[x],anss-=c[x^k];}
inline void main() {
n=g(),m=g(),k=g(); B=sqrt(n+1);
for(R i=1;i<=n;++i) a[i]=g()^a[i-1];
for(R i=1;i<=m;++i)
q[i].l=g()-1,q[i].r=g(),q[i].id=i,q[i].pos=q[i].l/B+1;
sort(q+1,q+m+1);
for(R i=1,l=1,r=0,LL,RR,id;i<=m;++i) {
LL=q[i].l,RR=q[i].r,id=q[i].id;
while(l<LL) sub(a[l++]); while(l>LL) add(a[--l]);
while(r<RR) add(a[++r]); while(r>RR) sub(a[r--]); ans[id]=anss;
} for(R i=1;i<=m;++i) printf("%d\n",ans[i]);
}
} signed main() {Luitaryi::main(); return 0;}

2019.11.25

P4462 [CQOI2018]异或序列 莫队的更多相关文章

  1. 洛谷P4462 [CQOI2018]异或序列(莫队)

    题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...

  2. luogu P4462 [CQOI2018]异或序列 |莫队

    题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar​区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...

  3. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  4. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  5. BZOJ5301:[CQOI2018]异或序列(莫队)

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

  6. [CQOI2018]异或序列 (莫队,异或前缀和)

    题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...

  7. CQOI2018异或序列 [莫队]

    莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...

  8. 洛谷P4462 [CQOI2018]异或序列(莫队)

    打广告->[这里](https://www.cnblogs.com/bztMinamoto/p/9538115.html) 我蠢了…… 如果$a_{l} xor ...a_{r}=k$,那么只要 ...

  9. 【CQOI2018】异或序列 - 莫队

    题目描述 已知一个长度为n的整数数列 $a_1,a_2,...,a_n$​,给定查询参数l.r,问在 $a_l,a_{l+1},...,a_r$​ 区间内,有多少子序列满足异或和等于k.也就是说,对于 ...

随机推荐

  1. 常用Tables控件介绍(二)

    初始化:1.使用现有表单创建数据表格,定义在HTML中的字段和数据 2.使用现有的table创建数据表格,定义在HTML中的字段 3.使用JS创建数据库表格 一.初始化后,根据单元格内的值,修改显示内 ...

  2. vue --- axios拦截器+form格式请求体

    在vue2.x中使用CLI生成的模板有很大改变,需要自己手动在main.ts同级目录下新建interceptors.ts interceptors.ts import axios from 'axio ...

  3. 3.02定义常量之const

    [注:本程序验证是使用vs2013版] #include <stdio.h> #include <stdlib.h> #include <string.h> #pr ...

  4. JDK8-lambda表达式以及接口可以定义默认方法

    一.Lambda表达式 1.Lamdba Lambda 允许把函数作为一个方法的参数,使用Lamdba可以让开发的代码更加简洁,但是易读性差,新人不了解Lamdba表达式或者代码功底有点差,不容易读懂 ...

  5. 关于python、pip、anaconda安装的一些记录

    写这篇博客是因为自己这段时间总是倒腾python的环境,其间倒腾崩了好几次.....无奈之下还是梳理一下. PYTHON 首在安装python3.6的之后,我安装了anaconda3,这样我的电脑上p ...

  6. Oracle.EntityFrameworkCore使用时报错:Specified cast is not valid

    我用的是:Oracle.EntityframeworkCore 2.19.30 如果看到报错:System.InvalidCastException:“Specified cast is not va ...

  7. Java中BIO和NIO

    同步/异步.阻塞/非阻塞概念 同步异步 同步和异步关注的是消息通信机制 (synchronous communication/ asynchronous communication) 同步:在发出一个 ...

  8. js 算法,数组排序

    冒泡排序.给数组按数字从小到大依次排序 arr = [1, 6, 7, 8, 9, 5, 18]; //最外层指针i从左到右依次循环指向,当最内层的指针循环一圈后,指针i才指向下个位置 //最内层指针 ...

  9. 启动Nginx服务失败:Job for nginx.service failed because the control process exited with error code. See "systemctl status nginx.service" and "journalctl -xe" for details.

    首次接触nginx,安装完使用命令 service nignx restart  后,出现这个错误,并按照提示给出的命令查看错误详情  systemctl status nginx.service   ...

  10. JAVASCRIPT中装饰器是什么(装修)

    装饰器是什么? 解码器是将另一段代码包装在一个代码中的简单方法. 这个概念类似于你以前听说过的功能成分和高阶成分. 这在许多情况下都被使用过,也就是说,成都装修公司简单地将一个函数包装到另一个函数中: ...