题目描述:

Kyoya and Colored Balls

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color i before drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

Input

The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

Then, k lines will follow. The i-th line will contain \(c_i\), the number of balls of the i-th color (1 ≤ \(c_i\) ≤ 1000).

The total number of balls doesn't exceed 1000.

Output

A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

Examples

Input

Copy

3
2
2
1

Output

Copy

3

Input

Copy

4
1
2
3
4

Output

Copy

1680

Note

In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

1 2 1 2 3
1 1 2 2 3
2 1 1 2 3

思路:

题目是说给一组有颜色的球,从袋子中去出球要求第i种颜色的求必须在第i+1种颜色的求取完之前取完,问这种取球方法有多少种。大致可以看出这是一道排列组合题,而且方案会很多(因为要取模)。一开始想的是整体怎么放,就是说我一下子就要先扣下每种颜色的一个球,固定住他们的顺序,然后在看其他的球的放法。但情况实际上十分复杂。然后想的是这是一种有重复元素的定序排列问题,但直接套公式好像又不可行。应该要分步考虑而不是全局考虑。考虑最后一个位子,肯定放最后一种颜色的球,之前的位置有\(sum-1\)个,剩余的最后颜色球放在这些位子上有\(C_{sum-1}^{a[last]-1}\)种放法(同种颜色的球无差别)。然后考虑倒数第二种颜色的最后一个球,这是忽略掉前面放好的球,只看空位,最后一个空位放一个球,其它空位放剩余倒数第二种颜色的球,有\(C_{sum-a[last]-1}^{a[last-1]-1}\)种放法。以此类推直到第一种颜色的球。

注意在实现组合数时用到了费马小定理求逆元来算组合数取模。

代码

#include <iostream>
#define max_n 1005
#define mod 1000000007
using namespace std;
int n;
long long a[max_n];
long long ans = 1;
long long sum = 0;
long long q_mod(long long a,long long b)
{
long long res = 1;
while(b)
{
if(b&1)
{
res = ((res%mod)*a)%mod;
}
a = (a*a)%mod;
b >>= 1;
}
return res;
}
long long fac[max_n];
void ini()
{
fac[0] = 1;
for(int i = 1;i<max_n;i++)
{
fac[i] = ((fac[i-1]%mod)*i)%mod;
}
}
long long inv(long long a)
{
return q_mod(a,mod-2);
}
long long comb(int n,int k)
{
if(k>n) return 0;
return (fac[n]*inv(fac[k])%mod*inv(fac[n-k])%mod)%mod;
}
int main()
{
ini();
//cout << comb(3,1) << endl;
cin >> n;
for(int i = 0;i<n;i++)
{
cin >> a[i];
sum += a[i];
}
for(int i = n-1;i>=0;i--)
{
ans = (ans%mod*(comb(sum-1,a[i]-1)%mod))%mod;
sum -= a[i];
}
cout << ans << endl;
return 0;
}

参考文章:

hellohelloC,CodeForces 553A Kyoya and Colored Balls (排列组合),https://blog.csdn.net/hellohelloc/article/details/47811913

Codeforces A. Kyoya and Colored Balls(分步组合)的更多相关文章

  1. Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合

    C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  2. codeforces 553A . Kyoya and Colored Balls 组合数学

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...

  3. C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))

    C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...

  4. codeforces 553A A. Kyoya and Colored Balls(组合数学+dp)

    题目链接: A. Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes i ...

  5. A. Kyoya and Colored Balls_排列组合,组合数

    Codeforces Round #309 (Div. 1) A. Kyoya and Colored Balls time limit per test 2 seconds memory limit ...

  6. CF-weekly4 F. Kyoya and Colored Balls

    https://codeforces.com/gym/253910/problem/F F. Kyoya and Colored Balls time limit per test 2 seconds ...

  7. Codeforces554 C Kyoya and Colored Balls

    C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...

  8. Kyoya and Colored Balls(组合数)

    Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. 554C - Kyoya and Colored Balls

    554C - Kyoya and Colored Balls 思路:组合数,用乘法逆元求. 代码: #include<bits/stdc++.h> using namespace std; ...

随机推荐

  1. Centos查看虚拟机IP地址及使用XShell连接

    1.在VMware中安装Centos7系统[1] 2.查看虚拟机里的Centos7的IP[2] 1)查看IP 输入ip查询命名 ip addr 发现 ens33 没有 inet 这个属性,那么就没法通 ...

  2. 【IntelliJ IDEA学习之二】IntelliJ IDEA常用配置

    版本:IntelliJIDEA2018.1.4 一.常用配置两张概览图(1)工作区总览介绍图 (2)setting配置图 --------------------------------------- ...

  3. 修改mysql端口后重启mysql报错:Can't start server: Bind on TCP/IP port. Got error...n denied

    1:错误信息:如下 [root@host ~]# systemctl status mariadb ● mariadb.service - MariaDB database server Loaded ...

  4. java ImmutableMap使用

    原文地址:https://blog.csdn.net/wantsToBeASinger/article/details/84997362 java中的Immutable对象: 简单地说,如果一个对象实 ...

  5. Alpha冲刺(7/10)——2019.4.29

    作业描述 课程 软件工程1916|W(福州大学) 团队名称 修!咻咻! 作业要求 项目Alpha冲刺(团队) 团队目标 切实可行的计算机协会维修预约平台 开发工具 Eclipse 团队信息 队员学号 ...

  6. 阿里云配置DDoS高防

  7. 014 Vue学习笔记2

    1.组件化 在大型应用开发的时候,页面可以划分成很多部分.往往不同的页面,也会有相同的部分.例如可能会有相同的头部导航.但是如果每个页面都独自开发,这无疑增加了我们开发的成本.所以我们会把页面的不同部 ...

  8. Go在windows下执行命令行指令

    需要在Go写的服务里面调用命令行或者批处理,并根据返回的结果做处理. 在网上搜索了一翻,验证成功,现记录如下: cmd := exec.Command("cmd") // cmd ...

  9. jmeter(二十七)分布式压测注意事项

    之前的博客:jemter(二十三):分布式测试简略的介绍了利用jmeter做分布式测试的方法,当时只是介绍了背景和原因,以及基本的配置操作,有同学说写得不够详细. 正好今年双十一,我司的全链路压测,也 ...

  10. KSQL: Streaming SQL for Apache Kafka

    Few weeks back, while I was enjoying my holidays in the south of Italy, I started receiving notifica ...