python 排序 归并排序
算法思想
迭代法:
def merge_sort5(collection):
length=len(collection)
#定义合并数组函数,参数是两个数组,返回一个包含两个数组的结果集
def merge(collection1,collection2):#数组长度可能不相等
result=[]
while collection1 and collection2:
# while len(collection1)>=1 and len(collection2)>=1:#不要这样写
result.pop(collection1.pop(0) if collection1[0]<=collection2[0] else collection2.pop(0))
# result.append(collection1.pop(0)) if collection1[0]<=collection2[0] else result.append(collection2.pop(0))
return result+collection1+collection2#比下面的好
# result.extend(collection1+collection2)
# return result
temps=[pow(2,i) for i in range(15)]
#定义存放根据步长切分后多余的,当有多余的让他和前面多余的进行合并
superfluous=[]
for temp in temps:
flage=True
left_index=-1
while left_index+2*temp<length:#减一是因为截取的时候不到右边
#这里可能会出错哦
flage=False
collection[left_index+1:left_index+2*temp+1]=merge(collection[left_index+1:left_index+temp+1],collection[left_index+temp+1:left_index+2*temp+1])
left_index+=2*temp
superfluous=merge(superfluous,collection[left_index+1:])#将多余的放到这里,当有新的多余的和老的合并
del(collection[left_index+1:])
if flage:
break
return superfluous
算法分析:稳定排序,需要O(n)额外空间、时间复杂度(一共有log(2,N)次外循环,内层循环分别为(n/1,n/2,n/4....n/temp)而(每次内循环中的归并操作的时间复杂度都是temp,)所有内层循环的时间复杂度是N(即n/temp*temp)所以T(n)=nlog(2,n),根据换地公式,log(2,n)=log(1,n)/log(1,2),考虑到取同数量级时不考虑系数,所以T(n)=O(nlogn)
比较
仍然没有快排快:随机数据 时间是快排的两倍
(sort) λ python some_sort.py
详细数据:[0.00100016594, 0.00299906731, 0.00100016594, 0.00299859047, 0.00100040436, 0.00299811363, 0.00199818611, 0.00199770927, 0.00200009346, 0.00199866295, 0.00199770927, 0.00099945068, 0.00200
009346, 0.00099825859, 0.0019993782, 0.0030002594, 0.00099873543, 0.00199723244, 0.00100016594, 0.00199866295, 0.00199818611, 0.00099897385, 0.00299787521, 0.00100016594, 0.00199890137, 0.0009996891, 0.00199961662, 0.00099992752, 0.00199794769, 0.00099301338, 0.00299859047, 0.00099921227, 0.0019993782, 0.00099992752, 0.00199961662, 0.00199913979, 0.00100040436, 0.0019993782, 0.0009996891, 0.00199961662, 0.00199842453, 0.00099873543, 0.0029976368, 0.00100016594, 0.00299835205, 0.00099921227, 0.00299882889, 0.0009996891, 0.00299835205, 0.00200009346, 0.00199985504, 0.00299835205, 0.0009996891, 0.00199866295, 0.00199961662, 0.00299930573, 0.00099873543, 0.00199985504, 0.00301456451, 0.00099849701, 0.00299859047, 0.00099825859, 0.00200128555, 0.00199866295, 0.0009996891, 0.00199723244, 0.00199913979, 0.00199866295, 0.00100016594, 0.00199961662, 0.00099992752, 0.00199842453, 0.00099921227, 0.00199842453, 0.00099897385, 0.00199890137, 0.00199866295, 0.00199866295, 0.00099921227, 0.00199985504, 0.00099873543, 0.00199913979, 0.00099945068, 0.00199890137, 0.00299787521, 0.00199866295, 0.00199818611, 0.00099992752, 0.00199818611, 0.00099921227, 0.00199866295, 0.00099992752, 0.00199794769, 0.00100040436, 0.00299906731, 0.00099992752, 0.00199818611, 0.00099945068, 0.00199866295, 0.00099992752]
运行了100次,平均运行时间差(me-other)/(bubble-quick)(正数代表你是个弟弟)是:0.00176918983
前者(插入排序)平均运行时间0.00361800909,后者(快排)平均运行时间0.00184881926,前者约是后者的1.9569倍
比插入快一个数量级:
详细数据:[-0.02898788452, -0.02898383141, -0.02898526192, -0.02896666527, -0.02997136116, -0.02898812294, -0.02801847458, -0.02900123596, -0.02998185158, -0.02995634079, -0.02994823456, -0.02992892
265, -0.02899622917, -0.10892653465, -0.03997755051, -0.02798676491, -0.02946019173, -0.02899646759, -0.02998185158, -0.02795672417, -0.02894616127, -0.03098273277, -0.02894926071, -0.02896404266, -0.02900695801, -0.02801513672, -0.02901649475, -0.02798366547, -0.09094834328, -0.04997181892, -0.02819728851, -0.02898263931, -0.02879166603, -0.02898216248, -0.02898240089, -0.02900052071, -0.02798342705, -0.02898788452, -0.03598976135, -0.02799391747, -0.0279853344, -0.02898383141, -0.02896499634, -0.02799677849, -0.03098726273, -0.02698349953, -0.02898192406, -0.02800416946, -0.02898788452, -0.02897882462, -0.02699589729, -0.02898049355, -0.02898478508, -0.02797055244, -0.03001332283, -0.02898716927, -0.02798342705, -0.02899360657, -0.02898335457, -0.02797985077, -0.02797579765, -0.02797961235, -0.02798891068, -0.02898812294, -0.02796649933, -0.02997922897, -0.02796721458, -0.02697610855, -0.02898406982, -0.02798390388, -0.02801299095, -0.02999520302, -0.03098082542, -0.0290017128, -0.02898097038, -0.02995085716, -0.02899312973, -0.02798342705, -0.02799725533, -0.02898263931, -0.02898335457, -0.02794861794, -0.03400492668, -0.03496909142, -0.03293538094, -0.03296351433, -0.03296232224, -0.02998614311, -0.02898216248, -0.02798914909, -0.02898836136, -0.02896380424, -0.02897286415, -0.03096866608, -0.02999520302, -0.02998280525, -0.02898335457, -0.03000807762, -0.02799677849, -0.03100776672]
运行了100次,平均运行时间差(me-other)/(bubble-quick)(正数代表你是个弟弟)是:-0.03094664574
前者(归并迭代法排序)平均运行时间0.00373820066,后者(快排)平均运行时间0.03468484640,前者约是后者的0.1078倍
递归法
def merge_sort6(collection):
'''自己写的(递归法)'''
#巧妙之处在于要想到能把merge和merge_sort6结合起来递归,思考的线索是根据参数的格式
def merge(left,right):
result=[]
while left and right:
result.append(left.pop(0) if left[0]<=right[0] else right.pop(0))
return result+left+right
#递归
length=len(collection)
if length==1:
return collection
while True:
mid=length//2
return(merge(merge_sort6(collection[:mid]),merge_sort6(collection[mid:])))
对比
与采用迭代法的相比,速度慢了一半,但胜在代码简单
详细数据:[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0009996891, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0009996891, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.00099945068, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
运行了100次,平均运行时间差(me-other)/(bubble-quick)(正数代表你是个弟弟)是:0.00000999928
前者(归并迭代法排序)平均运行时间0.00001999378,后者(递归法)平均运行时间0.00000999451,前者约是后者的2.0005倍
python 排序 归并排序的更多相关文章
- Python排序搜索基本算法之归并排序实例分析
Python排序搜索基本算法之归并排序实例分析 本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序 ...
- python实现归并排序,归并排序的详细分析
python实现归并排序,归并排序的详细分析. 学习归并排序的过程是十分痛苦的.它并不常用,看起来时间复杂度好像是几种排序中最低的,比快排的时间复杂度还要低,但是它的执行速度不是最快的.很多朋友不 ...
- python 排序算法总结及实例详解
python 排序算法总结及实例详解 这篇文章主要介绍了python排序算法总结及实例详解的相关资料,需要的朋友可以参考下 总结了一下常见集中排序的算法 排序算法总结及实例详解"> 归 ...
- 带你掌握4种Python 排序算法
摘要:在编程里,排序是一个重要算法,它可以帮助我们更快.更容易地定位数据.在这篇文章中,我们将使用排序算法分类器对我们的数组进行排序,了解它们是如何工作的. 本文分享自华为云社区<Python ...
- python排序之二冒泡排序法
python排序之二冒泡排序法 如果你理解之前的插入排序法那冒泡排序法就很容易理解,冒泡排序是两个两个以向后位移的方式比较大小在互换的过程好了不多了先上代码吧如下: 首先还是一个无序列表lis,老规矩 ...
- python排序之一插入排序
python排序之一插入排序 首先什么是插入排序,个人理解就是拿队列中的一个元素与其之前的元素一一做比较交根据大小换位置的过程好了我们先来看看代码 首先就是一个无序的列表先打印它好让排序后有对比效果, ...
- 用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭 ...
- python排序算法实现(冒泡、选择、插入)
python排序算法实现(冒泡.选择.插入) python 从小到大排序 1.冒泡排序: O(n2) s=[3,4,2,5,1,9] #count = 0 for i in range(len(s)) ...
- Python排序算法之选择排序定义与用法示例
Python排序算法之选择排序定义与用法示例 这篇文章主要介绍了Python排序算法之选择排序定义与用法,简单描述了选择排序的功能.原理,并结合实例形式分析了Python定义与使用选择排序的相关操作技 ...
随机推荐
- Shel脚本-初步入门之《02》
Shel脚本-初步入门-什么是 Shell 脚本 2.什么是 Shell脚本 当命令或程序语句不在命令行下执行,而是通过一个程序文件来执行时,改程序就被称为 Shell 脚本.如果在 Shell 脚本 ...
- spring-cloud-kubernetes服务发现之在k8s环境下开发spring cloud应用
通常情况下,我们的线上的服务在迁移到k8s环境下的时候,都是采用平滑迁移的方案.服务治理与注册中心等都是采用原先的组件.比如spring cloud应用,在k8s环境下还是用原来的一套注册中心(如eu ...
- JS高阶---事件循环模式(事件轮询)
大纲: 相关知识点: 主体: (1)模型原理 JS部分:初始化代码执行 WebAPIS:执行上下文对象(不是一个真的对象,而是一个抽象的虚拟对象,可以看做栈里的一个区域,包含很多对象) setTime ...
- dateNode 启动不了
dateNode 启动不了 进去路径中找到 name和data文件夹,current下面分别有 一个 version文件,打开发现两个clusterId都不一样 把name和data文件里面的ver ...
- streamsets 测试框架说明
streamsets 团队为了方便进行sdc以及sdh 的测试基于streamsets python sdk 开发了 streamsets Test Framework 安装 注意python 3.7 ...
- nginx配置代理时参数说明
- 生成指定python项目中所有的依赖文件
一. pipreqs工具 这个工具的好处是可以通过对项目目录的扫描,自动发现使用了那些类库,自动生成依赖清单. 缺点是可能会有些偏差,需要检查并自己调整下. 安装: pip install pipre ...
- Function.prototype.call.bind
在JavaScript中借用方法 在JavaScript中,有时候需要在一个不同的对象上重用一个函数,而不是在定义它的对象或者原型中.通过使用call(),applay()和bind(),我们可以很方 ...
- Sentinel: 使用注解限流
在前面我们对Sentinel做了一个详细的介绍,可以手动的通过Sentinel提供的SphU类来保护资源.这种做法不好的地方在于每个需要限制的地方都得写代码,从 0.1.1 版本开始,Sentinel ...
- divide two numbers using + opertor
package testpacknm; import java.util.Scanner; public class testcnm { public static void main(String[ ...