Walk Through Squares

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 944 Accepted Submission(s): 277

Problem Description



On the beaming day of 60th anniversary of NJUST, as a military college which was Second Artillery Academy of Harbin Military Engineering Institute before, queue phalanx is a special landscape.



Here is a M*N rectangle, and this one can be divided into M*N squares which are of the same size. As shown in the figure below:

01--02--03--04

|| || || ||

05--06--07--08

|| || || ||

09--10--11--12

Consequently, we have (M+1)*(N+1) nodes, which are all connected to their adjacent nodes. And actual queue phalanx will go along the edges.

The ID of the first node,the one in top-left corner,is 1. And the ID increases line by line first ,and then by column in turn ,as shown in the figure above.

For every node,there are two viable paths:

(1)go downward, indicated by 'D';

(2)go right, indicated by 'R';

The current mission is that, each queue phalanx has to walk from the left-top node No.1 to the right-bottom node whose id is (M+1)*(N+1).

In order to make a more aesthetic marching, each queue phalanx has to conduct two necessary actions. Let's define the action:

An action is started from a node to go for a specified travel mode.

So, two actions must show up in the way from 1 to (M+1)*(N+1).



For example, as to a 3*2 rectangle, figure below:

01--02--03--04

|| || || ||

05--06--07--08

|| || || ||

09--10--11--12

Assume that the two actions are (1)RRD (2)DDR



As a result , there is only one way : RRDDR. Briefly, you can not find another sequence containing these two strings at the same time.

If given the N, M and two actions, can you calculate the total ways of walking from node No.1 to the right-bottom node ?
Input
The first line contains a number T,(T is about 100, including 90 small test cases and 10 large ones) denoting the number of the test cases.

For each test cases,the first line contains two positive integers M and N(For large test cases,1<=M,N<=100, and for small ones 1<=M,N<=40). M denotes the row number and N denotes the column number.

The next two lines each contains a string which contains only 'R' and 'D'. The length of string will not exceed 100. We ensure there are no empty strings and the two strings are different.
Output
For each test cases,print the answer MOD 1000000007 in one line.
Sample Input
2
3 2
RRD
DDR
3 2
R
D
Sample Output
1
10
Source
Recommend
liuyiding | We have carefully selected several similar problems for you:
5017 5016 5015

pid=5014" target="_blank">
5014

pid=5013" target="_blank">
5013


顶层模型:AC自己主动机,就是用来处理状态转移的,和kmp类似。仅仅只是kmp是处理一个模式串,而AC自己主动机用来处理一堆模式串,对于每一状态而言下一个转移的状态也在自己主动机所表示的图上。

解题思路:dp[i][j][k][p]表示到第i行第j列自己主动机状态为k,二个串取和没取总的方案数。
要注意一个事情,就是一个位置可能由多个终结状态表示,所以要加上全部作为终结状态的公共前缀的值。
剩下的就非常easy了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#define mod 1000000007
using namespace std;
int dp[110][110][210][4];
int m,n; int next[210][2],L,rt,end[210],fail[210];
inline int newnode(){
next[L][0]=next[L][1]=0;
end[L++]=0;
return L-1;
}
inline void init(){
L=0;
rt=newnode();
}
inline void insert(char *s,int z){
int l=strlen(s),x=rt;
for(int i=0;i<l;i++){
int z=(s[i]=='R' ? 0:1);
if(!next[x][z]) next[x][z]=newnode();
x=next[x][z];
}
end[x]=z;
}
inline void build(){
queue<int> q;
fail[0]=0;
for(int i=0;i<2;i++){
if(next[rt][i]!=0){
fail[next[rt][i]]=rt;
q.push(next[rt][i]);
}
}
while(!q.empty()){
int x=q.front();
q.pop();
end[x]|=end[fail[x]];//!!!!!
for(int i=0;i<2;i++){
if(next[x][i]==0){
next[x][i]=next[fail[x]][i];
}else{
fail[next[x][i]]=next[fail[x]][i];
q.push(next[x][i]);
}
}
}
}
char s[110];
inline void read(){
scanf("%d%d",&n,&m);
scanf("%s",s);
insert(s,1);
scanf("%s",s);
insert(s,2);
} inline void solve(){
build();
for(int i=1;i<=m+1;i++)for(int j=1;j<=n+1;j++)
for(int k=0;k<L;k++)for(int p=0;p<4;p++) dp[i][j][k][p]=0;
//memset(dp,0,sizeof dp);
dp[1][1][0][0]=1;
for(int i=1;i<=m+1;i++){
for(int j=1;j<=n+1;j++){
for(int k=0;k<L;k++){
for(int p=0;p<4;p++){
int z;
if(j>1){
z=next[k][0];
dp[i][j][z][end[z]|p]+=dp[i][j-1][k][p];
if(dp[i][j][z][end[z]|p]>mod) dp[i][j][z][end[z]|p]-=mod;
}
if(i>1){
z=next[k][1];
dp[i][j][z][end[z]|p]+=dp[i-1][j][k][p];
if(dp[i][j][z][end[z]|p]>mod) dp[i][j][z][end[z]|p]-=mod;
}
}
}
}
}
int ans=0;
for(int i=0;i<L;i++){
ans+=dp[m+1][n+1][i][3];
if(ans>mod) ans-=mod;
}
printf("%d\n",ans);
} int main(){
int t;
scanf("%d",&t);
for(int ca=1;ca<=t;ca++){
init();
read();
solve();
}
return 0;
}
/*
100 99
DRDDRD
DDRD
*/



hdu4758 Walk Through Squares (AC自己主动机+DP)的更多相关文章

  1. HDU - 4758 Walk Through Squares (AC自己主动机+DP)

    Description   On the beaming day of 60th anniversary of NJUST, as a military college which was Secon ...

  2. POJ 2778 DNA Sequence (AC自己主动机 + dp)

    DNA Sequence 题意:DNA的序列由ACTG四个字母组成,如今给定m个不可行的序列.问随机构成的长度为n的序列中.有多少种序列是可行的(仅仅要包括一个不可行序列便不可行).个数非常大.对10 ...

  3. HDU - 2825 Wireless Password(AC自己主动机+DP)

    Description Liyuan lives in a old apartment. One day, he suddenly found that there was a wireless ne ...

  4. Hdu 3341 Lost&#39;s revenge (ac+自己主动机dp+hash)

    标题效果: 举个很多种DNA弦,每个字符串值值至1.最后,一个长字符串.要安排你最后一次另一个字符串,使其没事子值和最大. IDEAS: 首先easy我们的想法是想搜索的!管她3721..直接一个字符 ...

  5. poj 3691 DNA repair(AC自己主动机+dp)

    DNA repair Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5877   Accepted: 2760 Descri ...

  6. hdu4057 Rescue the Rabbit(AC自己主动机+DP)

    Rescue the Rabbit Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  7. HDU4758 Walk Through Squares AC自动机&&dp

    这道题当时做的时候觉得是数论题,包含两个01串什么的,但是算重复的时候又很蛋疼,赛后听说是字符串,然后就觉得很有可能.昨天队友问到这一题,在学了AC自动机之后就觉得简单了许多.那个时候不懂AC自动机, ...

  8. HDU - 4511 小明系列故事――女友的考验(AC自己主动机+DP)

    Description 最终放寒假了,小明要和女朋友一起去看电影.这天,女朋友想给小明一个考验,在小明正准备出发的时候.女朋友告诉他.她在电影院等他,小明过来的路线必须满足给定的规则:  1.如果小明 ...

  9. Codeforces 86C Genetic engineering (AC自己主动机+dp)

    题目大意: 要求构造一个串,使得这个串是由所给的串相连接构成,连接能够有重叠的部分. 思路分析: 首先用所给的串建立自己主动机,每一个单词节点记录当前节点可以达到的最长后缀. 開始的时候想的是dp[i ...

随机推荐

  1. oracle spfile和pfile文件(转)

    --======================== -->Oracle 参数文件 --======================== /* 参数文件(10g中的参数文件) 主要用来记录数据库 ...

  2. NYOJ 45 棋盘覆盖 模拟+高精度

    题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...

  3. NDK/JNI学习--进口hello-jniproject

    上一篇文章,简单的设置NDK开发环境,本文通过导入C:\android-ndk-r9d\samples\hello-jni(NDK自带example)来疏通真个环境. 打开Eclipse IDE.指定 ...

  4. KVC该机制

    KVC该机制 KVC是cocoa的大招,用来间接获取或者改动对象属性的方式. 一.KVC的作用: KVC大招之中的一个: [self setValuesForKeysWithDictionary:di ...

  5. VS2010程序打包操作

    摘录:http://www.cnblogs.com/daban/archive/2012/06/27/2565449.html   1.  在vs2010 选择“新建项目”----“其他项目类型”-- ...

  6. 玩转html5(三)---智能表单(form),使排版更加方便

    <!DOCTYPE html> <head> <meta http-equiv="Content-Type" content="text/h ...

  7. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  8. 客户端上显示csdn上的各类别下的的文章列表 (制作csdn app 三)

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/23597229 今天将在Android 使用Fragment,ViewPagerI ...

  9. 抓取csdn上的各类别的文章 (制作csdn app 二)

    转载请表明出处:http://blog.csdn.net/lmj623565791/article/details/23532797 这篇博客接着上一篇(Android 使用Fragment,View ...

  10. CareerCup Chapter 4 Trees and Graphs

    struct TreeNode{ int val; TreeNode* left; TreeNode* right; TreeNode(int val):val(val),left(NULL),rig ...