Walk Through Squares

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 944 Accepted Submission(s): 277

Problem Description



On the beaming day of 60th anniversary of NJUST, as a military college which was Second Artillery Academy of Harbin Military Engineering Institute before, queue phalanx is a special landscape.



Here is a M*N rectangle, and this one can be divided into M*N squares which are of the same size. As shown in the figure below:

01--02--03--04

|| || || ||

05--06--07--08

|| || || ||

09--10--11--12

Consequently, we have (M+1)*(N+1) nodes, which are all connected to their adjacent nodes. And actual queue phalanx will go along the edges.

The ID of the first node,the one in top-left corner,is 1. And the ID increases line by line first ,and then by column in turn ,as shown in the figure above.

For every node,there are two viable paths:

(1)go downward, indicated by 'D';

(2)go right, indicated by 'R';

The current mission is that, each queue phalanx has to walk from the left-top node No.1 to the right-bottom node whose id is (M+1)*(N+1).

In order to make a more aesthetic marching, each queue phalanx has to conduct two necessary actions. Let's define the action:

An action is started from a node to go for a specified travel mode.

So, two actions must show up in the way from 1 to (M+1)*(N+1).



For example, as to a 3*2 rectangle, figure below:

01--02--03--04

|| || || ||

05--06--07--08

|| || || ||

09--10--11--12

Assume that the two actions are (1)RRD (2)DDR



As a result , there is only one way : RRDDR. Briefly, you can not find another sequence containing these two strings at the same time.

If given the N, M and two actions, can you calculate the total ways of walking from node No.1 to the right-bottom node ?
Input
The first line contains a number T,(T is about 100, including 90 small test cases and 10 large ones) denoting the number of the test cases.

For each test cases,the first line contains two positive integers M and N(For large test cases,1<=M,N<=100, and for small ones 1<=M,N<=40). M denotes the row number and N denotes the column number.

The next two lines each contains a string which contains only 'R' and 'D'. The length of string will not exceed 100. We ensure there are no empty strings and the two strings are different.
Output
For each test cases,print the answer MOD 1000000007 in one line.
Sample Input
2
3 2
RRD
DDR
3 2
R
D
Sample Output
1
10
Source
Recommend
liuyiding | We have carefully selected several similar problems for you:
5017 5016 5015

pid=5014" target="_blank">
5014

pid=5013" target="_blank">
5013


顶层模型:AC自己主动机,就是用来处理状态转移的,和kmp类似。仅仅只是kmp是处理一个模式串,而AC自己主动机用来处理一堆模式串,对于每一状态而言下一个转移的状态也在自己主动机所表示的图上。

解题思路:dp[i][j][k][p]表示到第i行第j列自己主动机状态为k,二个串取和没取总的方案数。
要注意一个事情,就是一个位置可能由多个终结状态表示,所以要加上全部作为终结状态的公共前缀的值。
剩下的就非常easy了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#define mod 1000000007
using namespace std;
int dp[110][110][210][4];
int m,n; int next[210][2],L,rt,end[210],fail[210];
inline int newnode(){
next[L][0]=next[L][1]=0;
end[L++]=0;
return L-1;
}
inline void init(){
L=0;
rt=newnode();
}
inline void insert(char *s,int z){
int l=strlen(s),x=rt;
for(int i=0;i<l;i++){
int z=(s[i]=='R' ? 0:1);
if(!next[x][z]) next[x][z]=newnode();
x=next[x][z];
}
end[x]=z;
}
inline void build(){
queue<int> q;
fail[0]=0;
for(int i=0;i<2;i++){
if(next[rt][i]!=0){
fail[next[rt][i]]=rt;
q.push(next[rt][i]);
}
}
while(!q.empty()){
int x=q.front();
q.pop();
end[x]|=end[fail[x]];//!!!!!
for(int i=0;i<2;i++){
if(next[x][i]==0){
next[x][i]=next[fail[x]][i];
}else{
fail[next[x][i]]=next[fail[x]][i];
q.push(next[x][i]);
}
}
}
}
char s[110];
inline void read(){
scanf("%d%d",&n,&m);
scanf("%s",s);
insert(s,1);
scanf("%s",s);
insert(s,2);
} inline void solve(){
build();
for(int i=1;i<=m+1;i++)for(int j=1;j<=n+1;j++)
for(int k=0;k<L;k++)for(int p=0;p<4;p++) dp[i][j][k][p]=0;
//memset(dp,0,sizeof dp);
dp[1][1][0][0]=1;
for(int i=1;i<=m+1;i++){
for(int j=1;j<=n+1;j++){
for(int k=0;k<L;k++){
for(int p=0;p<4;p++){
int z;
if(j>1){
z=next[k][0];
dp[i][j][z][end[z]|p]+=dp[i][j-1][k][p];
if(dp[i][j][z][end[z]|p]>mod) dp[i][j][z][end[z]|p]-=mod;
}
if(i>1){
z=next[k][1];
dp[i][j][z][end[z]|p]+=dp[i-1][j][k][p];
if(dp[i][j][z][end[z]|p]>mod) dp[i][j][z][end[z]|p]-=mod;
}
}
}
}
}
int ans=0;
for(int i=0;i<L;i++){
ans+=dp[m+1][n+1][i][3];
if(ans>mod) ans-=mod;
}
printf("%d\n",ans);
} int main(){
int t;
scanf("%d",&t);
for(int ca=1;ca<=t;ca++){
init();
read();
solve();
}
return 0;
}
/*
100 99
DRDDRD
DDRD
*/



hdu4758 Walk Through Squares (AC自己主动机+DP)的更多相关文章

  1. HDU - 4758 Walk Through Squares (AC自己主动机+DP)

    Description   On the beaming day of 60th anniversary of NJUST, as a military college which was Secon ...

  2. POJ 2778 DNA Sequence (AC自己主动机 + dp)

    DNA Sequence 题意:DNA的序列由ACTG四个字母组成,如今给定m个不可行的序列.问随机构成的长度为n的序列中.有多少种序列是可行的(仅仅要包括一个不可行序列便不可行).个数非常大.对10 ...

  3. HDU - 2825 Wireless Password(AC自己主动机+DP)

    Description Liyuan lives in a old apartment. One day, he suddenly found that there was a wireless ne ...

  4. Hdu 3341 Lost&#39;s revenge (ac+自己主动机dp+hash)

    标题效果: 举个很多种DNA弦,每个字符串值值至1.最后,一个长字符串.要安排你最后一次另一个字符串,使其没事子值和最大. IDEAS: 首先easy我们的想法是想搜索的!管她3721..直接一个字符 ...

  5. poj 3691 DNA repair(AC自己主动机+dp)

    DNA repair Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5877   Accepted: 2760 Descri ...

  6. hdu4057 Rescue the Rabbit(AC自己主动机+DP)

    Rescue the Rabbit Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  7. HDU4758 Walk Through Squares AC自动机&&dp

    这道题当时做的时候觉得是数论题,包含两个01串什么的,但是算重复的时候又很蛋疼,赛后听说是字符串,然后就觉得很有可能.昨天队友问到这一题,在学了AC自动机之后就觉得简单了许多.那个时候不懂AC自动机, ...

  8. HDU - 4511 小明系列故事――女友的考验(AC自己主动机+DP)

    Description 最终放寒假了,小明要和女朋友一起去看电影.这天,女朋友想给小明一个考验,在小明正准备出发的时候.女朋友告诉他.她在电影院等他,小明过来的路线必须满足给定的规则:  1.如果小明 ...

  9. Codeforces 86C Genetic engineering (AC自己主动机+dp)

    题目大意: 要求构造一个串,使得这个串是由所给的串相连接构成,连接能够有重叠的部分. 思路分析: 首先用所给的串建立自己主动机,每一个单词节点记录当前节点可以达到的最长后缀. 開始的时候想的是dp[i ...

随机推荐

  1. MySQL 批量Dll操作(转)

    概述 本章节介绍使用游标来批量进行表操作,包括批量添加索引.批量添加字段等.如果对存储过程.变量定义.预处理还不是很熟悉先阅读我前面写过的关于这三个概念的文章,只有先了解了这三个概念才能更好的理解这篇 ...

  2. bat脚本命令

    注:本文转载地址 http://www.cnblogs.com/yefengmeander/archive/2011/12/01/2887978.html 1.Echo 命令  打开回显或关闭请求回显 ...

  3. 清除Android工程中没用到的资源(转)

    项目需求一改再改,UI一调再调,结果就是项目中一堆已经用不到但却没有清理的垃圾资源,不说工程大小问题,对新进入项目的人或看其他模块的代码的人来说,这些没清理的资源可能也可能会带来困扰,所以最好还是清理 ...

  4. 【原创】shadowebdict开发日记:基于linux的简明英汉字典(四)

    全系列目录: [原创]shadowebdict开发日记:基于linux的简明英汉字典(一) [原创]shadowebdict开发日记:基于linux的简明英汉字典(二) [原创]shadowebdic ...

  5. .Net程序猿乐Android发展---(1)环境结构

    对于没有接触Android人才发展,你可能会觉得Android更难以发展.接下来的一段时间,我们将了解Android开发的详细细节,主要是面对.NET程序猿,来看看.NET程序猿如何进行Android ...

  6. WPF/Silverlight中图形的平移,缩放,旋转,倾斜变换演示

    原文:WPF/Silverlight中图形的平移,缩放,旋转,倾斜变换演示 为方便描述, 这里仅以正方形来做演示, 其他图形从略. 运行时效果图:XAML代码:// Transform.XAML< ...

  7. 安卓反汇编工具arm-eabi-objdump

    安卓反汇编工具 在Arm平台系统自带的反编译工具在android/prebuild/linux-/toolchail/arm-abil-/bin目录下的arm_eabi-objdump进行反汇编 ar ...

  8. Android动画之二:View Animation

    作为一个博客<Android其中的动画:Drawable Animation>.android动画主要分为三大部分.上一篇博客已经解说Drawable Animation的使用方法,即逐帧 ...

  9. js阻止冒泡

    js阻止冒泡 (ev || event).cancelBubble = true; 标签切换 <script type="text/javascript"> windo ...

  10. C# WinForm多线程(三)Control.Invoke

    下面我们就把在Windows Form软件中使用Invoke时的多线程要注意的问题给大家做一个介绍. 首先,什么样的操作需要考虑使用多线程?总的一条就是,负责与用户交互的线程(以下简称为UI线程)应该 ...