假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作

  • 2z = (z + x) + (z - x)
  • 2x = (z + x) - (z - x)

那么跟据最大公因数性质,z + x和z - x的最大公因数也为2,又因为:

  • (z + x)(z - x) = y2,两边同除以4得:
    ((z + x) / 2)((z - x) / 2) = (y / 2)2

故可令:

  • z + x = 2m2, z - x = 2n2
    其中z = m + n, x = m - n(m与n互质)

则有:

  • y2 = z2 - x2 = 2m22n2 = 4m2n2
    即y = 2mn。

综上所述,可得到下式:

  • x = m2 - n2, y = 2mn, z = m2 + n2. (m, n为任意自然数)

这里还有一个问题:题目要求统计(x, y, z)三元组的数量时只统计x,y和z两两互质的的情况,这个问题用上面的算法就可以解决了。但对于统计p的数量,题目并不限定三元组是两两互质的。但是上式不能生成所有x, y, z并不是两两互质的情况。然而假设x与y最大公因数w不为1,则z也必能被w整除,因此w为x, y, z三个数的公因数。归纳总结可知,所有非两两互质的x0, y0, z0都可由一组互质的x, y, z乘以系数得到。根据以上理论就可以快速的求解了。

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAX 1000010
using namespace std;
bool vis[MAX];
int prime[MAX][],n;
int gcd(int a, int b)
{
return b == ? a : gcd(b, a%b);
}
int upper(int l, int r, int v)
{
int m;
while (l < r)
{
m = l + (r - l) / ;
if (prime[m][] <= v) l = m + ;
else r = m;
}
return r;
}
int cmp(const void*a, const void*b)
{
return ((int*)a)[] - ((int*)b)[];
}
int main()
{
int i,j,z,x,y,k=;
int imax = int(sqrt(MAX >> )+0.5),jmax;
for (i = ; i <= imax; i++)
{
jmax = int(sqrt(MAX - i*i) + 0.5);
for (j = i + ; j <= jmax; j++)
if ((i & ) + (j & )== && gcd(i, j) == )//(i&1)+(j&1)==1 一奇一偶
{
y = * i*j;
z = i*i + j*j;
x = j*j - i*i;
if (x*x+y*y==z*z&&z<=)
{
prime[k][] = x;
prime[k][] = y;
prime[k++][] = z;
}
}
}
qsort(prime,k,sizeof(prime[]),cmp);
while (scanf("%d", &n) == )
{
int a = upper(, k, n);
memset(vis, , n + );
for (i = ; i < a; i++)
for (j = ; j*prime[i][] <= n; j++)
{
vis[j*prime[i][]] = ;
vis[j*prime[i][]] = ;
vis[j*prime[i][]] = ;
}
int count = ;
for (i = ; i <= n; i++)
if (!vis[i]) count++;
printf("%d %d\n", a, count);
}
return ;
}

UVA106 - Fermat vs. Pythagoras的更多相关文章

  1. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras

    Fermat vs. Pythagoras Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 1493   Accepted: ...

  3. POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)

    设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y,z构成一个本原的毕达 ...

  4. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  5. Uva 106 - Fermat vs. Pythagoras 解题报告

    数论题,考查了本原勾股数(PPT) 对一个三元组(a,b,c)两两互质 且满足 a2 + b2 = c2 首先有结论 a 和 b 奇偶性不同 c总是奇数(可用反证法证明,不赘述) 设 a为奇数 b为偶 ...

  6. poj1305 Fermat vs. Pythagoras(勾股数)

    题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...

  7. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  8. 毕达哥拉斯三元组(勾股数组)poj1305

    本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...

  9. SDUT Fermat’s Chirstmas Theorem(素数筛)

    Fermat's Chirstmas Theorem Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 In a letter ...

随机推荐

  1. python读取CSV文件

    python中有一个读写csv文件的包,直接import csv即可.利用这个python包可以很方便对csv文件进行操作,一些简单的用法如下. 1. 读文件 csv_reader = csv.rea ...

  2. Xcode8中添加SnapKit框架报错,编译失败

    既然SnapKit的作者说SnapKit已经支持Swift3.0了,那么我们就先来适配SnapKit,首先用Xcode8新建一个空项目,利用Cocoapods导入SnapKit. Podfile  打 ...

  3. UILabel设置富文本格式显示

    实例化方法和使用方法 实例化方法: 使用字符串初始化 - (id)initWithString:(NSString *)str; 例: NSMutableAttributedString *Attri ...

  4. .Net_把文件数据添加到数据库中(面试题)

    一个文本文件含有如下内容: 4580616022644994|3000|赵涛 4580616022645017|6000|张屹 4580616022645090|3200|郑欣夏 上述文件每行为一个转 ...

  5. 2.2 Xpath-helper (chrome插件) 爬虫、网页分析解析辅助工具

    1. Xpath-helper下载 可以直接在chrome浏览器中的扩展程序搜索 Xpath-helper进行添加 也可以直接在http://www.chromein.com/crx_11654.ht ...

  6. UVALive - 4670 Dominating Patterns AC 自动机

    input n 1<=n<=150 word1 word2 ... wordn 1<=len(wirdi)<=70 s 1<=len(s)<=1000000 out ...

  7. Sql sever 常用语句(续)

    distintct:  查询结果排除了重复项(合并算一项)--如查姓名 select distinct ReaName from  UserInfo 分页语句:(查询区间时候应该查询出行号,作为分页的 ...

  8. Apache+Tomcat服务器集群配置

    在实际应用中,如果网站的访问量很大,为了提高访问速度,可以与多个Tomcat服务器与Apache服务器集成,让他们共同运行servlet/jsp 组件的任务,多个Tomcat服务器构成了一个集群(Cl ...

  9. CSS问题:怎么样让鼠标经过按钮的时候发生的状态一直停留在当页呢?

    $('p').mouseenter(function(){ $('p').css('background-color','yellow'); }); 只写一个mouseenter的动态效果的话是不能达 ...

  10. oracle 序列介绍

    序列介绍 序列是一个计数器,它并不会与特定的表关联.通过创建Oracle序列和触发器实现表的主键自增. 序列的用途一般用来填充主键和计数. 序列使用 1.创建序列 ORACLE序列的语法格式为: CR ...