http://blog.csdn.net/pipisorry/article/details/44119187

机器学习Machine Learning - Andrew NG courses学习笔记

Machine Learning System Design机器学习系统设计

Prioritizing What to Work On优先考虑做什么

the first decision we must make is how do we want to represent x, that is the features of the email.

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:feature的选择

1. chose a hundred words to use for this representation manually.

2. in practice,look through a training set, and in the training set depict(描写叙述) the most frequently occurring n words where n is usually between ten thousand and fifty thousand, and use those as your features.

用数据预处理减少错误率

Note:

1. getting lots of data will often help, but not all the time.

2. when spammers send email,very often they will try to obscure(隐藏) the origins of the email, and maybe use fake email headers.Or send email through very unusual sets of computer service.Through very unusual routes, in order to get the spam to you.

3. the spam classifier might not equate "w4tches" as "watches," and so it may have a harder time realizing that something is spam with these deliberate misspellings.And this is why spammers do it.

Error Analysis 错误分析

{help give you a way to more systematically make some of these decisions of different ideas on how to improve the algorithm.quick way to let you identify some errors and quickly identify what are the hard examples so that you can focus your efforts on those.}

设计机器学习系统的建议步骤

Note:

error analysis on the emails would inspire you to design new features.Or they'll tell you whether the current things or current shortcomings of the system and give you the inspiration you need to come up with improvements to it.

错误分析的一个样例

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:

1. 计算准确率Accuracy = (true positives + true negatives) / (total examples)推断

2. by counting up the number of emails in these different categories that you might discover, for example, that the algorithm is doing really particularly poorly on emails trying to steal passwords, and that may suggest that it might be worth your effort
to look more carefully at that type of email, and see if you can come up with better features to categorize them correctly.

3. a strong sign that it might actually be worth your while to spend the time to develop more sophisticated features based on the punctuation.

numerical evaluation of your learning algorithm


watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

note:

1. using a stemming software can help but it can hurt.

2. We'll see later, examples where coming up with this, sort of, single row number evaluation metric may need a little bit more work.then let you make these decisions much more quickly.

Error Metrics for Skewed Classes有偏类的错误度量(准确度/召回率)

skewed class: in this case, the number of positive examples is much,much smaller than the number of negative examples.

Note:

1. So a non learning algorithm just predicting y equals 0 all the time is even better than the 1% error.

2. By going from 99.2% accuracy to 99.5% accuracy.we just need a good change to the algorithm or not?

it becomes much harder to use just classification accuracy, because you can get very high classification accuracies or very low errors, and it's not always
clear if doing so is really improving the quality of your classifier because predicting y equals 0 all the time doesn't seem like a particularly good classifier.

faced with such a skewed classes therefore come up with a different error metric called precision recall.

Precision/Recall准确度/召回率

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" height="300" width="600">

Note:

1. a learning algorithm that predicts y equals zero all the time,then recall equal to zero,recognize that just isn't a very good classifier.

2. defined setting y equals 1, rather than y equals 0, to be sort of that the presence of that rare class that we're trying to detect.



总结 : precision recall is often a much better way to evaluate our learning algorithms,than looking at classification error or classification accuracy, when the classes are
very skewed.

[1.6 误差类型Types of errors-常见的误差度量方法]

Trading Off Precision and Recall权衡精度和召回率

Note:

1. tell someone that we think they have cancer only if they're very confident.that instead of setting the threshold at 0.5.

2. the position recall curve can look like many different shapes, depending on the details of the classifier.

3. 推断threshole变化给P\R带来的影响: Lowering the threshold means more y = 1 predictions, 而recall的分母是不变的!

先看recall变大还是变小,再推断precision怎么变化

4. 准确率Accuracy = (true positives + true negatives) / (total examples)

A way to choose this threshold automatically?

How do we decide which of these algorithms is best?

A way of combining precision recall called the f score.

Data For Machine Learning数据影响机器学习算法的表现

{the issue of how much data to train on}

Note:

1. 而不是include high order polynomial features of x.

2. hopefully even though we have a lot of parameters but if the training set is sort of even much larger than the number of parameters then hopefully these albums will be unlikely to overfit.

3. Finally putting these two together that the train set error is small and the test set error is close to the training error what this two together imply is that hopefully the test set error will also be small.

4. A sufficiently large training set will not be overfit



总结:

if you have a lot of data and you train a learning algorithm with lot of parameters, that might be a good way to give a high performance learning algorithm.

Review:

from:http://blog.csdn.net/pipisorry/article/details/44245513

版权声明:本文博客原创文章,博客,未经同意,不得转载。

Machine Learning - XI. Machine Learning System Design机器学习系统的设计(Week 6)的更多相关文章

  1. 斯坦福第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器 ...

  2. Ng第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频将谈到机器学习系 ...

  3. 11、 机器学习系统的设计(Machine Learning System Design)

    11.1 首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议. ...

  4. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  6. Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记

    Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...

  7. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

  8. zz 机器学习系统或者SysML&DL笔记

    机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Py ...

  9. 机器学习系统或者SysML&DL笔记(一)

    前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...

随机推荐

  1. 朝花夕拾-4-shell

    引言 shell,我们常常会用到,以其强大的功能,会帮助我们解决非常多棘手的问题.近期遇到一个问题,要跑非常多case,假设串行的执行,须要非常久.能不能让他们并行起来,但又不能全部case都并行执行 ...

  2. unix您不能使用crontab设置运营计划

    unix您不能使用crontab设置运营计划 在系统中进行crontab例如,设置在下列现象时有发生: 解决方法: 编辑cron文件内容: #EDITOR=vi  #export EDITOR     ...

  3. Qt原始资源形象问题后删除

        这些天Qt请项目超市收银系统,作为练一练手,无论如何,亦休闲亦无关,做几乎同样的.旨在取代以前的资源图片, 是什么改变了,码里面的路径都改了.还是编译只是去,总是提示这样一个错误. <s ...

  4. 应用ExcelPackage导出Excel

    前阵子工作需要,要实现从数据库中导出数据到Excel.老套路 先去百度上查阅资料,发现了以下几种方法: 1:将DataGrid控件中的数据导出Excel 2:将dataview导出excel 3:从网 ...

  5. hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)

    还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  6. 比ORA-24777: 我不使用不可移植数据库链接更郁闷的事情达成一致

    现场有一个同步误差,内容如下面:    java.sql.BatchUpdateException: ORA-24777: 不同意使用不可移植的数据库链路    at oracle.jdbc.driv ...

  7. Angular报错记录

    一 找不到Controller 出现这种错误,一般都是没有找到需要的Controller,需要仔细检查是否所需的Controller已经正确引入

  8. iBatis多表查询

    <typeAlias alias="Product" type="com.shopping.entity.Product"/> <typeAl ...

  9. 博客测试:博客系统i94web beta1.0 申请测试

    如何做了最近的博客更新,因为已经在线路和代码,我写了一个小博客系统:i94web,草草宣布beta1.0,请求您测试各种漏洞. 先看几张截图. 首页: watermark/2/text/aHR0cDo ...

  10. Nyoj 三国志(dijkstra+01背包)

    描述 <三国志>是一款很经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中 ...