Pipes

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 477    Accepted Submission(s): 238

Problem Description
The construction of office buildings has become a very standardized task. Pre-fabricated modules are combined according to the customer’s needs, shipped from a faraway factory, and assembled on the construction site. However, there are still some tasks that
require careful planning, one example being the routing of pipes for the heating system. 



Amodern office building ismade up of squaremodules, one on each floor being a service module from which (among other things) hot water is pumped out to the other modules through the heating pipes. Each module (including the service module) will have heating
pipes connecting it to exactly two of its two to four neighboring modules. Thus, the pipes have to run in a circuit, from the service module, visiting each module exactly once, before finally returning to the service module. Due to different properties of
the modules, having pipes connecting a pair of adjacent modules comes at different costs. For example, some modules are separated by thick walls, increasing the cost of laying pipes. Your task is to, given a description of a floor of an office building, decide
the cheapest way to route the heating pipes.
 
Input
The first line of input contains a single integer, stating the number of floors to handle. Then follow n floor descriptions, each beginning on a new line with two integers, 2 <= r <= 10 and 2 <= c <= 10, defining the size of the floor – r-by-c modules. Beginning
on the next line follows a floor description in ASCII format, in total 2r + 1 rows, each with 2c + 2 characters, including the final newline. All floors are perfectly rectangular, and will always have an even number of modules. All interior walls are represented
by numeric characters, ’0’ to ’9’, indicating the cost of routing pipes through the wall (see sample input).
 
Output
For each test case, output a single line with the cost of the cheapest route.
 
Sample Input
3
4 3
#######
# 2 3 #
#1#9#1#
# 2 3 #
#1#7#1#
# 5 3 #
#1#9#1#
# 2 3 #
#######
4 4
#########
# 2 3 3 #
#1#9#1#4#
# 2 3 6 #
#1#7#1#5#
# 5 3 1 #
#1#9#1#7#
# 2 3 0 #
#########
2 2
#####
# 1 #
#2#3#
# 4 #
#####
 
Sample Output
28
45
10
 

题意有点难理解,直接看输入好了,空格表示可通过的点,数字表示相邻点之间通过所须要的花费

问通过全部点并回到原点所须要的最少花费

插头DP模板题,仅仅须要将到达某个状态的数量改成最少花费就可以

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=100000+10;
const int N=10+10;
int n,m,size,index;
int mp[N][N],w[N][N][N][N],total[2],bit[N];//w[i][j][k][t]表示i,j->k,t的花费
int head[MAX],next[MAX],Hash[MAX];
LL dp[2][MAX],state[2][MAX],sum;//dp记录到达对应状态的最少花费 void Init(){
memset(mp,0,sizeof mp);
for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)mp[i][j]=1;
index=0;
sum=INF;
total[index]=1;
dp[index][1]=0;
state[index][1]=0;
} void HashCalState(LL s,LL v){
int pos=s%MAX;
for(int i=head[pos];i != -1;i=next[i]){
if(state[index][Hash[i]] == s){
dp[index][Hash[i]]=min(dp[index][Hash[i]],v);
return;
}
}
++total[index];
state[index][total[index]]=s;
dp[index][total[index]]=v;
//头插法
Hash[size]=total[index];
next[size]=head[pos];
head[pos]=size++;
} void DP(){//採用4进制括号表示法
for(int i=1;i<=n;++i){
for(int k=1;k<=total[index];++k)state[index][k]<<=2;//由上一行到本行最后一个插头(0)去掉,在头添加一个插头(0)
for(int j=1;j<=m;++j){//决策i,j格
memset(head,-1,sizeof head);
size=0;
index=index^1;
total[index]=0;
for(int k=1;k<=total[index^1];++k){//上一格的有效状态数
LL s=state[index^1][k];
LL v=dp[index^1][k];
int p=(s>>bit[j-1])%4;
int q=(s>>bit[j])%4;
//这里就不用推断mp[i][j]能否够通过,由于这里一定能通过
if(!p && !q){//创建新连通块
if(!mp[i][j+1] || !mp[i+1][j])continue;
s=s+(1<<bit[j-1])+2*(1<<bit[j]);
v=v+w[i][j][i][j+1]+w[i][j][i+1][j];
HashCalState(s,v);
}else if(!p && q){
if(mp[i][j+1])HashCalState(s,v+w[i][j][i][j+1]);
if(mp[i+1][j]){
s=s+q*(1<<bit[j-1])-q*(1<<bit[j]);
v=v+w[i][j][i+1][j];
HashCalState(s,v);
}
}else if(p && !q){
if(mp[i+1][j])HashCalState(s,v+w[i][j][i+1][j]);
if(mp[i][j+1]){
s=s-p*(1<<bit[j-1])+p*(1<<bit[j]);
v=v+w[i][j][i][j+1];
HashCalState(s,v);
}
}else if(p == 1 && q == 1){
int b=1;
for(int t=j+1;t<=m;++t){
int a=(s>>bit[t])%4;
if(a == 1)++b;
if(a == 2)--b;
if(!b){
s=s+(1<<bit[t])-2*(1<<bit[t]);
break;
}
}
s=s-(1<<bit[j-1])-(1<<bit[j]);
HashCalState(s,v);
}else if(p == 2 && q == 2){
int b=1;
for(int t=j-2;t>=0;--t){
int a=(s>>bit[t])%4;
if(a == 2)++b;
if(a == 1)--b;
if(!b){
s=s-(1<<bit[t])+2*(1<<bit[t]);
break;
}
}
s=s-2*(1<<bit[j-1])-2*(1<<bit[j]);
HashCalState(s,v);
}else if(p == 1 && q == 2){
if(i == n && j == m)sum=min(sum,v);
}else if(p == 2 && q == 1){
s=s-2*(1<<bit[j-1])-(1<<bit[j]);
HashCalState(s,v);
}
}
}
}
} int main(){
for(int i=0;i<N;++i)bit[i]=i<<1;
int t;
char s[N+N];
scanf("%d",&t);
while(t--){
scanf("%d%d%*c",&n,&m);
Init();
gets(s);
for(int i=1;i<=n;++i){
gets(s);
for(int j=2;j<2*m+1;j+=2){
w[i][j/2][i][j/2+1]=s[j]-'0';
}
gets(s);
for(int j=1;j<2*m+1;j+=2){
w[i][j/2+1][i+1][j/2+1]=s[j]-'0';
}
}
DP();
printf("%lld\n",sum);
}
return 0;
}

hdu1964之插头DP求最优值的更多相关文章

  1. HDU1964 Pipes —— 插头DP

    题目链接:https://vjudge.net/problem/HDU-1964 Pipes Time Limit: 5000/1000 MS (Java/Others)    Memory Limi ...

  2. USACO 6.5 Betsy's Tour (插头dp)

    Betsy's TourDon Piele A square township has been divided up into N2 square plots (1 <= N <= 7) ...

  3. 插头DP专题

    建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...

  4. URAL 1519 基础插头DP

    题目大意: 给定一个图,一部分点'*'作为障碍物,求经过所有非障碍点的汉密尔顿回路有多少条 基础的插头DP题目,对于陈丹琦的论文来说我觉得http://blog.sina.com.cn/s/blog_ ...

  5. hdu1693:eat trees(插头dp)

    题目大意: 题目背景竟然是dota!屠夫打到大后期就没用了,,只能去吃树! 给一个n*m的地图,有些格子是不可到达的,要把所有可到达的格子的树都吃完,并且要走回路,求方案数 题解: 这题大概是最简单的 ...

  6. 插头DP题目泛做(为了对应WYD的课件)

    题目1:BZOJ 1814 URAL 1519 Formula 1 题目大意:给定一个N*M的棋盘,上面有障碍格子.求一个经过所有非障碍格子形成的回路的数量. 插头DP入门题.记录连通分量. #inc ...

  7. 动态规划之插头DP入门

    基于联通性的状态压缩动态规划是一类非常典型的状态压缩动态规划问题,由于其压缩的本质并不像是普通的状态压缩动态规划那样用0或者1来表示未使用.使用两种状态,而是使用数字来表示类似插头的状态,因此.它又被 ...

  8. ural1519插头DP

    1519. Formula 1 Time limit: 1.0 second Memory limit: 64 MB Background Regardless of the fact, that V ...

  9. [入门向选讲] 插头DP:从零概念到入门 (例题:HDU1693 COGS1283 BZOJ2310 BZOJ2331)

    转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7326874.html 最近搞了一下插头DP的基础知识……这真的是一种很锻炼人的题型…… 每一道题的状态都不一样 ...

随机推荐

  1. 【从0到1学Web前端】CSS伪类和伪元素

    1.CSS中的伪类 CSS 伪类用于向某些选择器加入特殊的效果. 语法: selector : pseudo-class {property: value} CSS 类也可与伪类搭配使用 select ...

  2. java Process在windows的使用汇总(转)

    最常用的是ant(java工程中流行),maven,及通用的exec(只要有shell脚本如.sh,.bat,.exe,.cmd等).而其实前两者不容易出错,后者却遇到了以下问题:Caused by: ...

  3. hdu4059 The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. zoj2760(最大流)

    传送门:How Many Shortest Path 题意:给出n个点,和n*n的矩阵表示有向图.a[i][j]为-1表示i到j没有路径:不为-1则表示i到j的路径长度.给出一个vs和vt,要求vs到 ...

  5. 基于Java的开源CMS系统选择(转)

    CMS概述 对于网站CMS系统而言,基于PHP的是主流,如Drupal/Joomla在各个主流虚拟机提供商上都是标准配置,也被广泛使用. 但如果你拥有Java团队,或者项目目标是想建立一个企业网使用的 ...

  6. TopCoder中插件的用法

    今天弄了一下TopCoder的插件,发现真的很好很强大,插件的下载地址为 : http://community.topcoder.com/tc?module=Static&d1=applet& ...

  7. C库函数标准编程之fscanf()函数解读及其实验

    函数功能 fscanf()函数用于从参数stream的文件流中读取format格式的内容,然后存放到...所指定的变量中去.字符串以空格或换行符结束(实验1中会对它进一步说明) 函数格式 字符格式说明 ...

  8. TCP、UDP和HTTP

    先来一个讲TCP.UDP和HTTP关系的 1.TCP/IP是个协议组,可分为三个层次:网络层.传输层和应用层. 在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议. 在传输层中 ...

  9. Android 学习资源[转]

    因为一些大家都知道的原因,android很多官方出品的优秀开发资源在国内无法访问. 国内的同行们对此也做出了很多努力,有很多朋友通过各种手段把很多优秀的资源搬运到了国内,为国内android开发者提供 ...

  10. MYSQL查询一周内的数据(最近7天的)、最近一个月、最近三个月数据

    如果你要严格要求是某一年的,那可以这样 查询一天: select * from table where to_days(column_time) = to_days(now()); select * ...